Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness

A Correction to this paper has been published: https://doi.org/10.1007/s00330-020-07535-9

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2021-06, Vol.31 (6), p.4410-4411
Hauptverfasser: Park, Chankue, Choo, Ki Seok, Jung, Yunsub, Jeong, Hee Seok, Hwang, Jae-Yeon, Yun, Mi Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4411
container_issue 6
container_start_page 4410
container_title European radiology
container_volume 31
creator Park, Chankue
Choo, Ki Seok
Jung, Yunsub
Jeong, Hee Seok
Hwang, Jae-Yeon
Yun, Mi Sook
description A Correction to this paper has been published: https://doi.org/10.1007/s00330-020-07535-9
doi_str_mv 10.1007/s00330-020-07535-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470625632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470625632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2649-6d202a2b3fdbdb7c1e3c040f7ed34a58690808c961c5ce93245ee9064ba0f6bd3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qVVmgf6CHylIvXELHH3FibmjFl4TUC71iOc6EBu3aqSdB4t9jWNpKHDhYc_DzvjN6GPsq4FgAND8IQCmoQJbX1Kqu7Ae2ElrJSkCrP7IVWNVWjbV6j-0T3QOAFbr5zPaUUtJALVfsdp1yxjCPKfI5nfD1DR9nzH4eH5A_EO8RJ75Bn-MY73ghU6Q5Ly-BEx7SdvJ5pBJOA49pJOQ-9px--zxFJDpknwa_IfzyOg_Yr_Ozm_Vldf3z4mp9el0FabStTC9Betmpoe_6rgkCVQANQ4O90r5ujYUW2mCNCHVAq6SuES0Y3XkYTNerA3a0651y-rMgzW47UsDNxkdMCzmpGzCyNkoW9Psb9D4tOZbrnKxlq4QW0hZK7qiQE1HGwU153Pr86AS4Z_tuZ98V--7FvnsOfXutXrot9v8if3UXQO0AKl_xDvP_3e_UPgFx0Y-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528314129</pqid></control><display><type>article</type><title>Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness</title><source>SpringerLink Journals</source><creator>Park, Chankue ; Choo, Ki Seok ; Jung, Yunsub ; Jeong, Hee Seok ; Hwang, Jae-Yeon ; Yun, Mi Sook</creator><creatorcontrib>Park, Chankue ; Choo, Ki Seok ; Jung, Yunsub ; Jeong, Hee Seok ; Hwang, Jae-Yeon ; Yun, Mi Sook</creatorcontrib><description>A Correction to this paper has been published: https://doi.org/10.1007/s00330-020-07535-9</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-020-07535-9</identifier><identifier>PMID: 33326052</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Correction ; Diagnostic Radiology ; Imaging ; Internal Medicine ; Interventional Radiology ; Medicine ; Medicine &amp; Public Health ; Neuroradiology ; Radiology ; Ultrasound</subject><ispartof>European radiology, 2021-06, Vol.31 (6), p.4410-4411</ispartof><rights>European Society of Radiology 2020. corrected publication 2021</rights><rights>European Society of Radiology 2020. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2649-6d202a2b3fdbdb7c1e3c040f7ed34a58690808c961c5ce93245ee9064ba0f6bd3</citedby><orcidid>0000-0001-5072-4259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-020-07535-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-020-07535-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33326052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Chankue</creatorcontrib><creatorcontrib>Choo, Ki Seok</creatorcontrib><creatorcontrib>Jung, Yunsub</creatorcontrib><creatorcontrib>Jeong, Hee Seok</creatorcontrib><creatorcontrib>Hwang, Jae-Yeon</creatorcontrib><creatorcontrib>Yun, Mi Sook</creatorcontrib><title>Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>A Correction to this paper has been published: https://doi.org/10.1007/s00330-020-07535-9</description><subject>Correction</subject><subject>Diagnostic Radiology</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroradiology</subject><subject>Radiology</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1P3DAQhq2qVVmgf6CHylIvXELHH3FibmjFl4TUC71iOc6EBu3aqSdB4t9jWNpKHDhYc_DzvjN6GPsq4FgAND8IQCmoQJbX1Kqu7Ae2ElrJSkCrP7IVWNVWjbV6j-0T3QOAFbr5zPaUUtJALVfsdp1yxjCPKfI5nfD1DR9nzH4eH5A_EO8RJ75Bn-MY73ghU6Q5Ly-BEx7SdvJ5pBJOA49pJOQ-9px--zxFJDpknwa_IfzyOg_Yr_Ozm_Vldf3z4mp9el0FabStTC9Betmpoe_6rgkCVQANQ4O90r5ujYUW2mCNCHVAq6SuES0Y3XkYTNerA3a0651y-rMgzW47UsDNxkdMCzmpGzCyNkoW9Psb9D4tOZbrnKxlq4QW0hZK7qiQE1HGwU153Pr86AS4Z_tuZ98V--7FvnsOfXutXrot9v8if3UXQO0AKl_xDvP_3e_UPgFx0Y-O</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Park, Chankue</creator><creator>Choo, Ki Seok</creator><creator>Jung, Yunsub</creator><creator>Jeong, Hee Seok</creator><creator>Hwang, Jae-Yeon</creator><creator>Yun, Mi Sook</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5072-4259</orcidid></search><sort><creationdate>202106</creationdate><title>Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness</title><author>Park, Chankue ; Choo, Ki Seok ; Jung, Yunsub ; Jeong, Hee Seok ; Hwang, Jae-Yeon ; Yun, Mi Sook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2649-6d202a2b3fdbdb7c1e3c040f7ed34a58690808c961c5ce93245ee9064ba0f6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Correction</topic><topic>Diagnostic Radiology</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroradiology</topic><topic>Radiology</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Chankue</creatorcontrib><creatorcontrib>Choo, Ki Seok</creatorcontrib><creatorcontrib>Jung, Yunsub</creatorcontrib><creatorcontrib>Jeong, Hee Seok</creatorcontrib><creatorcontrib>Hwang, Jae-Yeon</creatorcontrib><creatorcontrib>Yun, Mi Sook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Chankue</au><au>Choo, Ki Seok</au><au>Jung, Yunsub</au><au>Jeong, Hee Seok</au><au>Hwang, Jae-Yeon</au><au>Yun, Mi Sook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2021-06</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><spage>4410</spage><epage>4411</epage><pages>4410-4411</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>A Correction to this paper has been published: https://doi.org/10.1007/s00330-020-07535-9</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33326052</pmid><doi>10.1007/s00330-020-07535-9</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-5072-4259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2021-06, Vol.31 (6), p.4410-4411
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2470625632
source SpringerLink Journals
subjects Correction
Diagnostic Radiology
Imaging
Internal Medicine
Interventional Radiology
Medicine
Medicine & Public Health
Neuroradiology
Radiology
Ultrasound
title Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20to:%20CT%20iterative%20vs%20deep%20learning%20reconstruction:%20comparison%20of%20noise%20and%20sharpness&rft.jtitle=European%20radiology&rft.au=Park,%20Chankue&rft.date=2021-06&rft.volume=31&rft.issue=6&rft.spage=4410&rft.epage=4411&rft.pages=4410-4411&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-020-07535-9&rft_dat=%3Cproquest_cross%3E2470625632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528314129&rft_id=info:pmid/33326052&rfr_iscdi=true