Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes
Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous m...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2021-02, Vol.16 (2), p.937-964 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 2 |
container_start_page | 937 |
container_title | Nature protocols |
container_volume | 16 |
creator | Xie, Ruoxiao Liang, Zhe Ai, Yongjian Zheng, Wenchen Xiong, Jialiang Xu, Peidi Liu, Yupeng Ding, Mingyu Gao, Jianyi Wang, Jiaping Liang, Qionglin |
description | Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10–20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
This protocol describes the construction of spinning microfluidics platforms for facile production of perfusable hydrogel microtubes of various sizes and shapes. The microtubes can be loaded with cells to create biomimetic vascular channels. |
doi_str_mv | 10.1038/s41596-020-00442-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470283521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655717197</galeid><sourcerecordid>A655717197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c841544306f2163900d3afce8831dc4306b0a08f1e6850bc643dfabd21c9aad63</originalsourceid><addsrcrecordid>eNp9kl1r1jAcxYM43Jx-AS-k4I1DOvPSpsnlw4PTwZigEy9Dmpea0TY1acF9e__PuhceUQkkIfmdQ3I4CL0i-JRgJt7nitSSl5jiEuOqoqV8go5IU-OSNlI-vd1XJSVCHqLnOV8D1DDePEOHjDEiuGRHaNjGYYpZt70rhmBS9P0SbDBFnsI4hrErpl7PPqYhFzAXXpsA6JSiXcwc4lhEX7QhDmFwM8gml_yy2v24sSl2rl9956V1-QU68LrP7uXdeoy-nX242n4qLz5_PN9uLkpTEzqXRsDPqoph7inhTGJsmfbGCcGINbvzFmssPHFc1Lg1vGLW69ZSYqTWlrNj9Hb1hXf-XFye1RCycX2vRxeXrGjVYCpYTQmgb_5Ar-OSRngdUKIhvCYYP1Kd7p0Ko49z0mZnqja8rhvSENkAdfoXCoZ1kEEcnYfs9gUnewJgZvdr7vSSszr_-mWfffdvdnP1fXu5T9OVhuhzTs6rKYVBpxtFsNq1R63tUdAeddseJUH0-i6LpR2cfZDc1wUAtgIZrsbOpcew_mP7G9Dvze4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487165100</pqid></control><display><type>article</type><title>Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink (Online service)</source><creator>Xie, Ruoxiao ; Liang, Zhe ; Ai, Yongjian ; Zheng, Wenchen ; Xiong, Jialiang ; Xu, Peidi ; Liu, Yupeng ; Ding, Mingyu ; Gao, Jianyi ; Wang, Jiaping ; Liang, Qionglin</creator><creatorcontrib>Xie, Ruoxiao ; Liang, Zhe ; Ai, Yongjian ; Zheng, Wenchen ; Xiong, Jialiang ; Xu, Peidi ; Liu, Yupeng ; Ding, Mingyu ; Gao, Jianyi ; Wang, Jiaping ; Liang, Qionglin</creatorcontrib><description>Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10–20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
This protocol describes the construction of spinning microfluidics platforms for facile production of perfusable hydrogel microtubes of various sizes and shapes. The microtubes can be loaded with cells to create biomimetic vascular channels.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-020-00442-9</identifier><identifier>PMID: 33318693</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/277 ; 631/61/2035 ; 631/61/54 ; 639/925/350/877 ; Alginates ; Alginates - chemistry ; Alginic acid ; Analytical Chemistry ; Biochips ; Biological Techniques ; Biomedical and Life Sciences ; Biomimetic Materials - chemistry ; Biomimetics ; Biomimetics - methods ; Blood vessels ; Calcium alginate ; Coaxial flow ; Computational Biology/Bioinformatics ; Confocal microscopy ; Crosslinked polymers ; Crosslinking ; Devices ; Fabrication ; Fluid dynamics ; Health aspects ; Humans ; Hydrodynamics ; Hydrogels ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; In vivo methods and tests ; Lab-On-A-Chip Devices ; Life Sciences ; Methods ; Microarrays ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microfluidics - instrumentation ; Microfluidics - methods ; Organic Chemistry ; Permeability ; Physiological aspects ; Platforms ; Prepolymers ; Production processes ; Protocol ; Spinning (materials) ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Water-soluble polymers</subject><ispartof>Nature protocols, 2021-02, Vol.16 (2), p.937-964</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c841544306f2163900d3afce8831dc4306b0a08f1e6850bc643dfabd21c9aad63</citedby><cites>FETCH-LOGICAL-c512t-c841544306f2163900d3afce8831dc4306b0a08f1e6850bc643dfabd21c9aad63</cites><orcidid>0000-0002-6750-038X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-020-00442-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-020-00442-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33318693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Ruoxiao</creatorcontrib><creatorcontrib>Liang, Zhe</creatorcontrib><creatorcontrib>Ai, Yongjian</creatorcontrib><creatorcontrib>Zheng, Wenchen</creatorcontrib><creatorcontrib>Xiong, Jialiang</creatorcontrib><creatorcontrib>Xu, Peidi</creatorcontrib><creatorcontrib>Liu, Yupeng</creatorcontrib><creatorcontrib>Ding, Mingyu</creatorcontrib><creatorcontrib>Gao, Jianyi</creatorcontrib><creatorcontrib>Wang, Jiaping</creatorcontrib><creatorcontrib>Liang, Qionglin</creatorcontrib><title>Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10–20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
This protocol describes the construction of spinning microfluidics platforms for facile production of perfusable hydrogel microtubes of various sizes and shapes. The microtubes can be loaded with cells to create biomimetic vascular channels.</description><subject>631/1647/277</subject><subject>631/61/2035</subject><subject>631/61/54</subject><subject>639/925/350/877</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>Analytical Chemistry</subject><subject>Biochips</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Biomimetics - methods</subject><subject>Blood vessels</subject><subject>Calcium alginate</subject><subject>Coaxial flow</subject><subject>Computational Biology/Bioinformatics</subject><subject>Confocal microscopy</subject><subject>Crosslinked polymers</subject><subject>Crosslinking</subject><subject>Devices</subject><subject>Fabrication</subject><subject>Fluid dynamics</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hydrogels</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>In vivo methods and tests</subject><subject>Lab-On-A-Chip Devices</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Organic Chemistry</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Platforms</subject><subject>Prepolymers</subject><subject>Production processes</subject><subject>Protocol</subject><subject>Spinning (materials)</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Water-soluble polymers</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kl1r1jAcxYM43Jx-AS-k4I1DOvPSpsnlw4PTwZigEy9Dmpea0TY1acF9e__PuhceUQkkIfmdQ3I4CL0i-JRgJt7nitSSl5jiEuOqoqV8go5IU-OSNlI-vd1XJSVCHqLnOV8D1DDePEOHjDEiuGRHaNjGYYpZt70rhmBS9P0SbDBFnsI4hrErpl7PPqYhFzAXXpsA6JSiXcwc4lhEX7QhDmFwM8gml_yy2v24sSl2rl9956V1-QU68LrP7uXdeoy-nX242n4qLz5_PN9uLkpTEzqXRsDPqoph7inhTGJsmfbGCcGINbvzFmssPHFc1Lg1vGLW69ZSYqTWlrNj9Hb1hXf-XFye1RCycX2vRxeXrGjVYCpYTQmgb_5Ar-OSRngdUKIhvCYYP1Kd7p0Ko49z0mZnqja8rhvSENkAdfoXCoZ1kEEcnYfs9gUnewJgZvdr7vSSszr_-mWfffdvdnP1fXu5T9OVhuhzTs6rKYVBpxtFsNq1R63tUdAeddseJUH0-i6LpR2cfZDc1wUAtgIZrsbOpcew_mP7G9Dvze4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Xie, Ruoxiao</creator><creator>Liang, Zhe</creator><creator>Ai, Yongjian</creator><creator>Zheng, Wenchen</creator><creator>Xiong, Jialiang</creator><creator>Xu, Peidi</creator><creator>Liu, Yupeng</creator><creator>Ding, Mingyu</creator><creator>Gao, Jianyi</creator><creator>Wang, Jiaping</creator><creator>Liang, Qionglin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6750-038X</orcidid></search><sort><creationdate>20210201</creationdate><title>Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes</title><author>Xie, Ruoxiao ; Liang, Zhe ; Ai, Yongjian ; Zheng, Wenchen ; Xiong, Jialiang ; Xu, Peidi ; Liu, Yupeng ; Ding, Mingyu ; Gao, Jianyi ; Wang, Jiaping ; Liang, Qionglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c841544306f2163900d3afce8831dc4306b0a08f1e6850bc643dfabd21c9aad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/277</topic><topic>631/61/2035</topic><topic>631/61/54</topic><topic>639/925/350/877</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>Analytical Chemistry</topic><topic>Biochips</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Biomimetics - methods</topic><topic>Blood vessels</topic><topic>Calcium alginate</topic><topic>Coaxial flow</topic><topic>Computational Biology/Bioinformatics</topic><topic>Confocal microscopy</topic><topic>Crosslinked polymers</topic><topic>Crosslinking</topic><topic>Devices</topic><topic>Fabrication</topic><topic>Fluid dynamics</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hydrogels</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>In vivo methods and tests</topic><topic>Lab-On-A-Chip Devices</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Organic Chemistry</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Platforms</topic><topic>Prepolymers</topic><topic>Production processes</topic><topic>Protocol</topic><topic>Spinning (materials)</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Water-soluble polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Ruoxiao</creatorcontrib><creatorcontrib>Liang, Zhe</creatorcontrib><creatorcontrib>Ai, Yongjian</creatorcontrib><creatorcontrib>Zheng, Wenchen</creatorcontrib><creatorcontrib>Xiong, Jialiang</creatorcontrib><creatorcontrib>Xu, Peidi</creatorcontrib><creatorcontrib>Liu, Yupeng</creatorcontrib><creatorcontrib>Ding, Mingyu</creatorcontrib><creatorcontrib>Gao, Jianyi</creatorcontrib><creatorcontrib>Wang, Jiaping</creatorcontrib><creatorcontrib>Liang, Qionglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Ruoxiao</au><au>Liang, Zhe</au><au>Ai, Yongjian</au><au>Zheng, Wenchen</au><au>Xiong, Jialiang</au><au>Xu, Peidi</au><au>Liu, Yupeng</au><au>Ding, Mingyu</au><au>Gao, Jianyi</au><au>Wang, Jiaping</au><au>Liang, Qionglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>937</spage><epage>964</epage><pages>937-964</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10–20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
This protocol describes the construction of spinning microfluidics platforms for facile production of perfusable hydrogel microtubes of various sizes and shapes. The microtubes can be loaded with cells to create biomimetic vascular channels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33318693</pmid><doi>10.1038/s41596-020-00442-9</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6750-038X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2021-02, Vol.16 (2), p.937-964 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470283521 |
source | MEDLINE; Nature; SpringerLink (Online service) |
subjects | 631/1647/277 631/61/2035 631/61/54 639/925/350/877 Alginates Alginates - chemistry Alginic acid Analytical Chemistry Biochips Biological Techniques Biomedical and Life Sciences Biomimetic Materials - chemistry Biomimetics Biomimetics - methods Blood vessels Calcium alginate Coaxial flow Computational Biology/Bioinformatics Confocal microscopy Crosslinked polymers Crosslinking Devices Fabrication Fluid dynamics Health aspects Humans Hydrodynamics Hydrogels Hydrogels - chemical synthesis Hydrogels - chemistry In vivo methods and tests Lab-On-A-Chip Devices Life Sciences Methods Microarrays Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidics Microfluidics - instrumentation Microfluidics - methods Organic Chemistry Permeability Physiological aspects Platforms Prepolymers Production processes Protocol Spinning (materials) Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Water-soluble polymers |
title | Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composable%20microfluidic%20spinning%20platforms%20for%20facile%20production%20of%20biomimetic%20perfusable%20hydrogel%20microtubes&rft.jtitle=Nature%20protocols&rft.au=Xie,%20Ruoxiao&rft.date=2021-02-01&rft.volume=16&rft.issue=2&rft.spage=937&rft.epage=964&rft.pages=937-964&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-020-00442-9&rft_dat=%3Cgale_proqu%3EA655717197%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487165100&rft_id=info:pmid/33318693&rft_galeid=A655717197&rfr_iscdi=true |