Electron transfer pathways from quantum dynamics simulations

This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (22), p.225102-225102
Hauptverfasser: Pedron, F. N., Issoglio, F., Estrin, D. A., Scherlis, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225102
container_issue 22
container_start_page 225102
container_title The Journal of chemical physics
container_volume 153
creator Pedron, F. N.
Issoglio, F.
Estrin, D. A.
Scherlis, D. A.
description This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.
doi_str_mv 10.1063/5.0023577
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470278409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470278409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</originalsourceid><addsrcrecordid>eNp90MtKw0AUBuBBFFurC19AAm5USD1zT8CNlHqBghtdD5PJDKbk5kyi9O1Nba2g4OoMh49_Dj9CpximGAS95lMAQrmUe2iMIUljKVLYR-Nhi-NUgBihoxCWAIAlYYdoRCkdXokco5t5aU3nmzrqvK6Dsz5qdff6oVchcr6porde111fRfmq1lVhQhSKqi91VzR1OEYHTpfBnmznBL3czZ9nD_Hi6f5xdruIDU1oF-fEZMBolgF2zPEcC51ygi2IhFimLWPSDUdmDMBozlMusU0wFxK0xlhSOkEXm9zWN2-9DZ2qimBsWeraNn1QhEkgMmGQDvT8F102va-H6wYlEkZEStbqcqOMb0Lw1qnWF5X2K4VBrStVXG0rHezZNrHPKpvv5HeHA7jagGCK7quYnXlv_E-SanP3H_779SfoYYrn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468426929</pqid></control><display><type>article</type><title>Electron transfer pathways from quantum dynamics simulations</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</creator><creatorcontrib>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</creatorcontrib><description>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0023577</identifier><identifier>PMID: 33317287</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge transfer ; Density functional theory ; Dimers ; Electron states ; Electron transfer ; Electron Transport ; Electrons ; Heme - chemistry ; Heme - metabolism ; Models, Chemical ; Molecular Dynamics Simulation ; Peroxidase ; Peroxidases - chemistry ; Peroxidases - metabolism ; Phenylalanine ; Phenylalanine - chemistry ; Phenylalanine - metabolism ; Physics ; Polyacetylene ; Quantum mechanics ; Quantum Theory ; Simulation ; Time dependence ; Trypanosoma cruzi - enzymology ; Trypanosoma cruzi - metabolism ; Tryptophan ; Tryptophan - chemistry ; Tryptophan - metabolism</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (22), p.225102-225102</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</citedby><cites>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</cites><orcidid>0000-0001-9225-7855 ; 0000-0002-9011-2895 ; 0000-0002-0588-287X ; 0000-0002-5006-7225 ; 0000000192257855 ; 0000000290112895 ; 000000020588287X ; 0000000250067225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0023577$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33317287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedron, F. N.</creatorcontrib><creatorcontrib>Issoglio, F.</creatorcontrib><creatorcontrib>Estrin, D. A.</creatorcontrib><creatorcontrib>Scherlis, D. A.</creatorcontrib><title>Electron transfer pathways from quantum dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</description><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Dimers</subject><subject>Electron states</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Peroxidase</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - metabolism</subject><subject>Phenylalanine</subject><subject>Phenylalanine - chemistry</subject><subject>Phenylalanine - metabolism</subject><subject>Physics</subject><subject>Polyacetylene</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Time dependence</subject><subject>Trypanosoma cruzi - enzymology</subject><subject>Trypanosoma cruzi - metabolism</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKw0AUBuBBFFurC19AAm5USD1zT8CNlHqBghtdD5PJDKbk5kyi9O1Nba2g4OoMh49_Dj9CpximGAS95lMAQrmUe2iMIUljKVLYR-Nhi-NUgBihoxCWAIAlYYdoRCkdXokco5t5aU3nmzrqvK6Dsz5qdff6oVchcr6porde111fRfmq1lVhQhSKqi91VzR1OEYHTpfBnmznBL3czZ9nD_Hi6f5xdruIDU1oF-fEZMBolgF2zPEcC51ygi2IhFimLWPSDUdmDMBozlMusU0wFxK0xlhSOkEXm9zWN2-9DZ2qimBsWeraNn1QhEkgMmGQDvT8F102va-H6wYlEkZEStbqcqOMb0Lw1qnWF5X2K4VBrStVXG0rHezZNrHPKpvv5HeHA7jagGCK7quYnXlv_E-SanP3H_779SfoYYrn</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Pedron, F. N.</creator><creator>Issoglio, F.</creator><creator>Estrin, D. A.</creator><creator>Scherlis, D. A.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9225-7855</orcidid><orcidid>https://orcid.org/0000-0002-9011-2895</orcidid><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid><orcidid>https://orcid.org/0000-0002-5006-7225</orcidid><orcidid>https://orcid.org/0000000192257855</orcidid><orcidid>https://orcid.org/0000000290112895</orcidid><orcidid>https://orcid.org/000000020588287X</orcidid><orcidid>https://orcid.org/0000000250067225</orcidid></search><sort><creationdate>20201214</creationdate><title>Electron transfer pathways from quantum dynamics simulations</title><author>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Dimers</topic><topic>Electron states</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Peroxidase</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - metabolism</topic><topic>Phenylalanine</topic><topic>Phenylalanine - chemistry</topic><topic>Phenylalanine - metabolism</topic><topic>Physics</topic><topic>Polyacetylene</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Time dependence</topic><topic>Trypanosoma cruzi - enzymology</topic><topic>Trypanosoma cruzi - metabolism</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedron, F. N.</creatorcontrib><creatorcontrib>Issoglio, F.</creatorcontrib><creatorcontrib>Estrin, D. A.</creatorcontrib><creatorcontrib>Scherlis, D. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedron, F. N.</au><au>Issoglio, F.</au><au>Estrin, D. A.</au><au>Scherlis, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transfer pathways from quantum dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>153</volume><issue>22</issue><spage>225102</spage><epage>225102</epage><pages>225102-225102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33317287</pmid><doi>10.1063/5.0023577</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9225-7855</orcidid><orcidid>https://orcid.org/0000-0002-9011-2895</orcidid><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid><orcidid>https://orcid.org/0000-0002-5006-7225</orcidid><orcidid>https://orcid.org/0000000192257855</orcidid><orcidid>https://orcid.org/0000000290112895</orcidid><orcidid>https://orcid.org/000000020588287X</orcidid><orcidid>https://orcid.org/0000000250067225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-12, Vol.153 (22), p.225102-225102
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2470278409
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Charge transfer
Density functional theory
Dimers
Electron states
Electron transfer
Electron Transport
Electrons
Heme - chemistry
Heme - metabolism
Models, Chemical
Molecular Dynamics Simulation
Peroxidase
Peroxidases - chemistry
Peroxidases - metabolism
Phenylalanine
Phenylalanine - chemistry
Phenylalanine - metabolism
Physics
Polyacetylene
Quantum mechanics
Quantum Theory
Simulation
Time dependence
Trypanosoma cruzi - enzymology
Trypanosoma cruzi - metabolism
Tryptophan
Tryptophan - chemistry
Tryptophan - metabolism
title Electron transfer pathways from quantum dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transfer%20pathways%20from%20quantum%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pedron,%20F.%20N.&rft.date=2020-12-14&rft.volume=153&rft.issue=22&rft.spage=225102&rft.epage=225102&rft.pages=225102-225102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0023577&rft_dat=%3Cproquest_pubme%3E2470278409%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468426929&rft_id=info:pmid/33317287&rfr_iscdi=true