Electron transfer pathways from quantum dynamics simulations
This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a no...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-12, Vol.153 (22), p.225102-225102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225102 |
---|---|
container_issue | 22 |
container_start_page | 225102 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Pedron, F. N. Issoglio, F. Estrin, D. A. Scherlis, D. A. |
description | This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant. |
doi_str_mv | 10.1063/5.0023577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470278409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470278409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</originalsourceid><addsrcrecordid>eNp90MtKw0AUBuBBFFurC19AAm5USD1zT8CNlHqBghtdD5PJDKbk5kyi9O1Nba2g4OoMh49_Dj9CpximGAS95lMAQrmUe2iMIUljKVLYR-Nhi-NUgBihoxCWAIAlYYdoRCkdXokco5t5aU3nmzrqvK6Dsz5qdff6oVchcr6porde111fRfmq1lVhQhSKqi91VzR1OEYHTpfBnmznBL3czZ9nD_Hi6f5xdruIDU1oF-fEZMBolgF2zPEcC51ygi2IhFimLWPSDUdmDMBozlMusU0wFxK0xlhSOkEXm9zWN2-9DZ2qimBsWeraNn1QhEkgMmGQDvT8F102va-H6wYlEkZEStbqcqOMb0Lw1qnWF5X2K4VBrStVXG0rHezZNrHPKpvv5HeHA7jagGCK7quYnXlv_E-SanP3H_779SfoYYrn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468426929</pqid></control><display><type>article</type><title>Electron transfer pathways from quantum dynamics simulations</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</creator><creatorcontrib>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</creatorcontrib><description>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0023577</identifier><identifier>PMID: 33317287</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge transfer ; Density functional theory ; Dimers ; Electron states ; Electron transfer ; Electron Transport ; Electrons ; Heme - chemistry ; Heme - metabolism ; Models, Chemical ; Molecular Dynamics Simulation ; Peroxidase ; Peroxidases - chemistry ; Peroxidases - metabolism ; Phenylalanine ; Phenylalanine - chemistry ; Phenylalanine - metabolism ; Physics ; Polyacetylene ; Quantum mechanics ; Quantum Theory ; Simulation ; Time dependence ; Trypanosoma cruzi - enzymology ; Trypanosoma cruzi - metabolism ; Tryptophan ; Tryptophan - chemistry ; Tryptophan - metabolism</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (22), p.225102-225102</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</citedby><cites>FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</cites><orcidid>0000-0001-9225-7855 ; 0000-0002-9011-2895 ; 0000-0002-0588-287X ; 0000-0002-5006-7225 ; 0000000192257855 ; 0000000290112895 ; 000000020588287X ; 0000000250067225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0023577$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33317287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedron, F. N.</creatorcontrib><creatorcontrib>Issoglio, F.</creatorcontrib><creatorcontrib>Estrin, D. A.</creatorcontrib><creatorcontrib>Scherlis, D. A.</creatorcontrib><title>Electron transfer pathways from quantum dynamics simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</description><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Dimers</subject><subject>Electron states</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Peroxidase</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - metabolism</subject><subject>Phenylalanine</subject><subject>Phenylalanine - chemistry</subject><subject>Phenylalanine - metabolism</subject><subject>Physics</subject><subject>Polyacetylene</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Time dependence</subject><subject>Trypanosoma cruzi - enzymology</subject><subject>Trypanosoma cruzi - metabolism</subject><subject>Tryptophan</subject><subject>Tryptophan - chemistry</subject><subject>Tryptophan - metabolism</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKw0AUBuBBFFurC19AAm5USD1zT8CNlHqBghtdD5PJDKbk5kyi9O1Nba2g4OoMh49_Dj9CpximGAS95lMAQrmUe2iMIUljKVLYR-Nhi-NUgBihoxCWAIAlYYdoRCkdXokco5t5aU3nmzrqvK6Dsz5qdff6oVchcr6porde111fRfmq1lVhQhSKqi91VzR1OEYHTpfBnmznBL3czZ9nD_Hi6f5xdruIDU1oF-fEZMBolgF2zPEcC51ygi2IhFimLWPSDUdmDMBozlMusU0wFxK0xlhSOkEXm9zWN2-9DZ2qimBsWeraNn1QhEkgMmGQDvT8F102va-H6wYlEkZEStbqcqOMb0Lw1qnWF5X2K4VBrStVXG0rHezZNrHPKpvv5HeHA7jagGCK7quYnXlv_E-SanP3H_779SfoYYrn</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Pedron, F. N.</creator><creator>Issoglio, F.</creator><creator>Estrin, D. A.</creator><creator>Scherlis, D. A.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9225-7855</orcidid><orcidid>https://orcid.org/0000-0002-9011-2895</orcidid><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid><orcidid>https://orcid.org/0000-0002-5006-7225</orcidid><orcidid>https://orcid.org/0000000192257855</orcidid><orcidid>https://orcid.org/0000000290112895</orcidid><orcidid>https://orcid.org/000000020588287X</orcidid><orcidid>https://orcid.org/0000000250067225</orcidid></search><sort><creationdate>20201214</creationdate><title>Electron transfer pathways from quantum dynamics simulations</title><author>Pedron, F. N. ; Issoglio, F. ; Estrin, D. A. ; Scherlis, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d2cb043bb01f4f5d16a9521e0682e4ae447f606b400ca559571e815670aa11733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Dimers</topic><topic>Electron states</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Peroxidase</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - metabolism</topic><topic>Phenylalanine</topic><topic>Phenylalanine - chemistry</topic><topic>Phenylalanine - metabolism</topic><topic>Physics</topic><topic>Polyacetylene</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Time dependence</topic><topic>Trypanosoma cruzi - enzymology</topic><topic>Trypanosoma cruzi - metabolism</topic><topic>Tryptophan</topic><topic>Tryptophan - chemistry</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedron, F. N.</creatorcontrib><creatorcontrib>Issoglio, F.</creatorcontrib><creatorcontrib>Estrin, D. A.</creatorcontrib><creatorcontrib>Scherlis, D. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedron, F. N.</au><au>Issoglio, F.</au><au>Estrin, D. A.</au><au>Scherlis, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transfer pathways from quantum dynamics simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>153</volume><issue>22</issue><spage>225102</spage><epage>225102</epage><pages>225102-225102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This work explores the possibility of simulating an electron transfer process between a donor and an acceptor in real time using time-dependent density functional theory electron dynamics. To achieve this objective, a central issue to resolve is the definition of the initial state. This must be a non-equilibrium electronic state able to trigger the charge transfer dynamics; here, two schemes are proposed to prepare such states. One is based on the combination of the density matrices of the donor and acceptor converged separately with appropriate charges (for example, −1 for the donor and +1 for the acceptor). The second approach relied on constrained DFT to localize the charge on each fragment. With these schemes, electron transfer processes are simulated in different model systems of increasing complexity: an atomic hydrogen dimer, a polyacetylene chain, and the active site of the T. cruzi hybrid type A heme peroxidase, for which two possible electron transfer paths have been postulated. For the latter system, the present methodology applied in a hybrid Quantum Mechanics - Molecular Mechanics framework allows us to establish the relative probabilities of each path and provides insight into the inhibition of the electron transfer provoked by the substitution of tryptophan by phenylalanine in the W233F mutant.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33317287</pmid><doi>10.1063/5.0023577</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9225-7855</orcidid><orcidid>https://orcid.org/0000-0002-9011-2895</orcidid><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid><orcidid>https://orcid.org/0000-0002-5006-7225</orcidid><orcidid>https://orcid.org/0000000192257855</orcidid><orcidid>https://orcid.org/0000000290112895</orcidid><orcidid>https://orcid.org/000000020588287X</orcidid><orcidid>https://orcid.org/0000000250067225</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-12, Vol.153 (22), p.225102-225102 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470278409 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Charge transfer Density functional theory Dimers Electron states Electron transfer Electron Transport Electrons Heme - chemistry Heme - metabolism Models, Chemical Molecular Dynamics Simulation Peroxidase Peroxidases - chemistry Peroxidases - metabolism Phenylalanine Phenylalanine - chemistry Phenylalanine - metabolism Physics Polyacetylene Quantum mechanics Quantum Theory Simulation Time dependence Trypanosoma cruzi - enzymology Trypanosoma cruzi - metabolism Tryptophan Tryptophan - chemistry Tryptophan - metabolism |
title | Electron transfer pathways from quantum dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transfer%20pathways%20from%20quantum%20dynamics%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pedron,%20F.%20N.&rft.date=2020-12-14&rft.volume=153&rft.issue=22&rft.spage=225102&rft.epage=225102&rft.pages=225102-225102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0023577&rft_dat=%3Cproquest_pubme%3E2470278409%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468426929&rft_id=info:pmid/33317287&rfr_iscdi=true |