Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase
Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to c...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2021-02, Vol.266, p.118879-118879, Article 118879 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118879 |
---|---|
container_issue | |
container_start_page | 118879 |
container_title | Life sciences (1973) |
container_volume | 266 |
creator | Lima, Natália K.S. Farias, Wilka R.A. Cirilo, Marry A.S. Oliveira, Angélica G. Farias, Juliane S. Aires, Regina S. Muzi-Filho, Humberto Paixão, Ana D.O. Vieira, Leucio D. |
description | Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300–350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations. |
doi_str_mv | 10.1016/j.lfs.2020.118879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470025569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320520316325</els_id><sourcerecordid>2470025569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a9ac7cb1e598dbd8ebbbc02d56d3ebbfb0a576aeaf1504014170a0e276f636593</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERZfCB-CCLHFBQlnGcZxs4FSVP61UFVTB2XLsCetVYi92gtgPw3ft7G7LgQOnGY9-70l-j7EXApYCRP12sxz6vCyhpLdYrZr2EVsIGgXUUjxmC4CyKmQJ6pQ9zXkDAEo18gk7lVIKAAkL9ucWgxm4z3aNozdFwi2mfs4-Bj6gcZlPka93dJwwHK4mOG7XJvzAzH3g2xR_-5EsprmbB-Q35g2fkgl5G9N0gBMGHwoS-HjwoH1wMU-YYkCed7SN7_htJHHs-c35h6-XnDydyfiMnfRmyPj8fp6x758-fru4LK6_fL66OL8ubFVWU2FaYxvbCVTtynVuhV3XWSidqp2kve_AqKY2aHqhoAJRiQYMYNnUfS1r1coz9vroS7_5OWOe9EiJ4DCYgHHOuqwaylKpeo---gfdxDlRhkQpUE1ZtyCIEkfKpphzwl5vE6WUdlqA3nenN5q60_vu9LE70ry8d567Ed1fxUNZBLw_AkhR_PKYdLYeg0XnE9pJu-j_Y38HeCCsiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505726901</pqid></control><display><type>article</type><title>Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lima, Natália K.S. ; Farias, Wilka R.A. ; Cirilo, Marry A.S. ; Oliveira, Angélica G. ; Farias, Juliane S. ; Aires, Regina S. ; Muzi-Filho, Humberto ; Paixão, Ana D.O. ; Vieira, Leucio D.</creator><creatorcontrib>Lima, Natália K.S. ; Farias, Wilka R.A. ; Cirilo, Marry A.S. ; Oliveira, Angélica G. ; Farias, Juliane S. ; Aires, Regina S. ; Muzi-Filho, Humberto ; Paixão, Ana D.O. ; Vieira, Leucio D.</creatorcontrib><description>Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300–350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2020.118879</identifier><identifier>PMID: 33310030</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Acute kidney injury ; Acute Kidney Injury - complications ; Acute Kidney Injury - metabolism ; Acute Kidney Injury - pathology ; Aldosterone ; Aldosterone - metabolism ; Angiotensin ; Angiotensin II ; Animals ; Blood pressure ; Drinking water ; Hypertension ; Hypertension - enzymology ; Hypertension - etiology ; Hypertension - pathology ; Ischemia ; Ischemia-reperfusion ; Isoforms ; Kidney Tubules, Proximal - metabolism ; Kidney Tubules, Proximal - pathology ; Kinases ; Lipid peroxidation ; Lipids ; Male ; Na+/K+-exchanging ATPase ; NAD(P)H oxidase ; NADPH oxidase ; NADPH Oxidases - metabolism ; Oxidase ; Oxidative Stress ; Peptidyl-dipeptidase A ; Peroxidation ; Protein kinase C ; Rats ; Rats, Wistar ; Receptors ; Renal cortex ; Renin ; Renin-Angiotensin System ; Renin-angiotensin-aldosterone system ; Reperfusion ; Reperfusion Injury - complications ; Reperfusion Injury - metabolism ; Reperfusion Injury - pathology ; Risk analysis ; Risk factors ; Sodium ; Sodium - metabolism ; Surgery</subject><ispartof>Life sciences (1973), 2021-02, Vol.266, p.118879-118879, Article 118879</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a9ac7cb1e598dbd8ebbbc02d56d3ebbfb0a576aeaf1504014170a0e276f636593</citedby><cites>FETCH-LOGICAL-c424t-a9ac7cb1e598dbd8ebbbc02d56d3ebbfb0a576aeaf1504014170a0e276f636593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lfs.2020.118879$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33310030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima, Natália K.S.</creatorcontrib><creatorcontrib>Farias, Wilka R.A.</creatorcontrib><creatorcontrib>Cirilo, Marry A.S.</creatorcontrib><creatorcontrib>Oliveira, Angélica G.</creatorcontrib><creatorcontrib>Farias, Juliane S.</creatorcontrib><creatorcontrib>Aires, Regina S.</creatorcontrib><creatorcontrib>Muzi-Filho, Humberto</creatorcontrib><creatorcontrib>Paixão, Ana D.O.</creatorcontrib><creatorcontrib>Vieira, Leucio D.</creatorcontrib><title>Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300–350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.</description><subject>Acute kidney injury</subject><subject>Acute Kidney Injury - complications</subject><subject>Acute Kidney Injury - metabolism</subject><subject>Acute Kidney Injury - pathology</subject><subject>Aldosterone</subject><subject>Aldosterone - metabolism</subject><subject>Angiotensin</subject><subject>Angiotensin II</subject><subject>Animals</subject><subject>Blood pressure</subject><subject>Drinking water</subject><subject>Hypertension</subject><subject>Hypertension - enzymology</subject><subject>Hypertension - etiology</subject><subject>Hypertension - pathology</subject><subject>Ischemia</subject><subject>Ischemia-reperfusion</subject><subject>Isoforms</subject><subject>Kidney Tubules, Proximal - metabolism</subject><subject>Kidney Tubules, Proximal - pathology</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Male</subject><subject>Na+/K+-exchanging ATPase</subject><subject>NAD(P)H oxidase</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidases - metabolism</subject><subject>Oxidase</subject><subject>Oxidative Stress</subject><subject>Peptidyl-dipeptidase A</subject><subject>Peroxidation</subject><subject>Protein kinase C</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Renal cortex</subject><subject>Renin</subject><subject>Renin-Angiotensin System</subject><subject>Renin-angiotensin-aldosterone system</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - complications</subject><subject>Reperfusion Injury - metabolism</subject><subject>Reperfusion Injury - pathology</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Surgery</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS1ERZfCB-CCLHFBQlnGcZxs4FSVP61UFVTB2XLsCetVYi92gtgPw3ft7G7LgQOnGY9-70l-j7EXApYCRP12sxz6vCyhpLdYrZr2EVsIGgXUUjxmC4CyKmQJ6pQ9zXkDAEo18gk7lVIKAAkL9ucWgxm4z3aNozdFwi2mfs4-Bj6gcZlPka93dJwwHK4mOG7XJvzAzH3g2xR_-5EsprmbB-Q35g2fkgl5G9N0gBMGHwoS-HjwoH1wMU-YYkCed7SN7_htJHHs-c35h6-XnDydyfiMnfRmyPj8fp6x758-fru4LK6_fL66OL8ubFVWU2FaYxvbCVTtynVuhV3XWSidqp2kve_AqKY2aHqhoAJRiQYMYNnUfS1r1coz9vroS7_5OWOe9EiJ4DCYgHHOuqwaylKpeo---gfdxDlRhkQpUE1ZtyCIEkfKpphzwl5vE6WUdlqA3nenN5q60_vu9LE70ry8d567Ed1fxUNZBLw_AkhR_PKYdLYeg0XnE9pJu-j_Y38HeCCsiw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lima, Natália K.S.</creator><creator>Farias, Wilka R.A.</creator><creator>Cirilo, Marry A.S.</creator><creator>Oliveira, Angélica G.</creator><creator>Farias, Juliane S.</creator><creator>Aires, Regina S.</creator><creator>Muzi-Filho, Humberto</creator><creator>Paixão, Ana D.O.</creator><creator>Vieira, Leucio D.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210201</creationdate><title>Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase</title><author>Lima, Natália K.S. ; Farias, Wilka R.A. ; Cirilo, Marry A.S. ; Oliveira, Angélica G. ; Farias, Juliane S. ; Aires, Regina S. ; Muzi-Filho, Humberto ; Paixão, Ana D.O. ; Vieira, Leucio D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a9ac7cb1e598dbd8ebbbc02d56d3ebbfb0a576aeaf1504014170a0e276f636593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute kidney injury</topic><topic>Acute Kidney Injury - complications</topic><topic>Acute Kidney Injury - metabolism</topic><topic>Acute Kidney Injury - pathology</topic><topic>Aldosterone</topic><topic>Aldosterone - metabolism</topic><topic>Angiotensin</topic><topic>Angiotensin II</topic><topic>Animals</topic><topic>Blood pressure</topic><topic>Drinking water</topic><topic>Hypertension</topic><topic>Hypertension - enzymology</topic><topic>Hypertension - etiology</topic><topic>Hypertension - pathology</topic><topic>Ischemia</topic><topic>Ischemia-reperfusion</topic><topic>Isoforms</topic><topic>Kidney Tubules, Proximal - metabolism</topic><topic>Kidney Tubules, Proximal - pathology</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Male</topic><topic>Na+/K+-exchanging ATPase</topic><topic>NAD(P)H oxidase</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidases - metabolism</topic><topic>Oxidase</topic><topic>Oxidative Stress</topic><topic>Peptidyl-dipeptidase A</topic><topic>Peroxidation</topic><topic>Protein kinase C</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Renal cortex</topic><topic>Renin</topic><topic>Renin-Angiotensin System</topic><topic>Renin-angiotensin-aldosterone system</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - complications</topic><topic>Reperfusion Injury - metabolism</topic><topic>Reperfusion Injury - pathology</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Natália K.S.</creatorcontrib><creatorcontrib>Farias, Wilka R.A.</creatorcontrib><creatorcontrib>Cirilo, Marry A.S.</creatorcontrib><creatorcontrib>Oliveira, Angélica G.</creatorcontrib><creatorcontrib>Farias, Juliane S.</creatorcontrib><creatorcontrib>Aires, Regina S.</creatorcontrib><creatorcontrib>Muzi-Filho, Humberto</creatorcontrib><creatorcontrib>Paixão, Ana D.O.</creatorcontrib><creatorcontrib>Vieira, Leucio D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Natália K.S.</au><au>Farias, Wilka R.A.</au><au>Cirilo, Marry A.S.</au><au>Oliveira, Angélica G.</au><au>Farias, Juliane S.</au><au>Aires, Regina S.</au><au>Muzi-Filho, Humberto</au><au>Paixão, Ana D.O.</au><au>Vieira, Leucio D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>266</volume><spage>118879</spage><epage>118879</epage><pages>118879-118879</pages><artnum>118879</artnum><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300–350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>33310030</pmid><doi>10.1016/j.lfs.2020.118879</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3205 |
ispartof | Life sciences (1973), 2021-02, Vol.266, p.118879-118879, Article 118879 |
issn | 0024-3205 1879-0631 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470025569 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acute kidney injury Acute Kidney Injury - complications Acute Kidney Injury - metabolism Acute Kidney Injury - pathology Aldosterone Aldosterone - metabolism Angiotensin Angiotensin II Animals Blood pressure Drinking water Hypertension Hypertension - enzymology Hypertension - etiology Hypertension - pathology Ischemia Ischemia-reperfusion Isoforms Kidney Tubules, Proximal - metabolism Kidney Tubules, Proximal - pathology Kinases Lipid peroxidation Lipids Male Na+/K+-exchanging ATPase NAD(P)H oxidase NADPH oxidase NADPH Oxidases - metabolism Oxidase Oxidative Stress Peptidyl-dipeptidase A Peroxidation Protein kinase C Rats Rats, Wistar Receptors Renal cortex Renin Renin-Angiotensin System Renin-angiotensin-aldosterone system Reperfusion Reperfusion Injury - complications Reperfusion Injury - metabolism Reperfusion Injury - pathology Risk analysis Risk factors Sodium Sodium - metabolism Surgery |
title | Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renal%20ischemia-reperfusion%20leads%20to%20hypertension%20and%20changes%20in%20proximal%20tubule%20Na+%20transport%20and%20renin-angiotensin-aldosterone%20system:%20Role%20of%20NADPH%20oxidase&rft.jtitle=Life%20sciences%20(1973)&rft.au=Lima,%20Nat%C3%A1lia%20K.S.&rft.date=2021-02-01&rft.volume=266&rft.spage=118879&rft.epage=118879&rft.pages=118879-118879&rft.artnum=118879&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2020.118879&rft_dat=%3Cproquest_cross%3E2470025569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505726901&rft_id=info:pmid/33310030&rft_els_id=S0024320520316325&rfr_iscdi=true |