Digital postprocessing and image segmentation for objective analysis of colorimetric reactions

Recently, there has been an explosion of scientific literature describing the use of colorimetry for monitoring the progression or the endpoint result of colorimetric reactions. The availability of inexpensive imaging technology (e.g., scanners, Raspberry Pi, smartphones and other sub-$50 digital ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2021-01, Vol.16 (1), p.218-238
Hauptverfasser: Woolf, M. Shane, Dignan, Leah M., Scott, Anchi T., Landers, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 1
container_start_page 218
container_title Nature protocols
container_volume 16
creator Woolf, M. Shane
Dignan, Leah M.
Scott, Anchi T.
Landers, James P.
description Recently, there has been an explosion of scientific literature describing the use of colorimetry for monitoring the progression or the endpoint result of colorimetric reactions. The availability of inexpensive imaging technology (e.g., scanners, Raspberry Pi, smartphones and other sub-$50 digital cameras) has lowered the barrier to accessing cost-efficient, objective detection methodologies. However, to exploit these imaging devices as low-cost colorimetric detectors, it is paramount that they interface with flexible software that is capable of image segmentation and probing a variety of color spaces (RGB, HSB, Y’UV, L*a*b*, etc.). Development of tailor-made software (e.g., smartphone applications) for advanced image analysis requires complex, custom-written processing algorithms, advanced computer programming knowledge and/or expertise in physics, mathematics, pattern recognition and computer vision and learning. Freeware programs, such as ImageJ, offer an alternative, affordable path to robust image analysis. Here we describe a protocol that uses the ImageJ program to process images of colorimetric experiments. In practice, this protocol consists of three distinct workflow options. This protocol is accessible to uninitiated users with little experience in image processing or color science and does not require fluorescence signals, expensive imaging equipment or custom-written algorithms. We anticipate that total analysis time per region of interest is ~6 min for new users and
doi_str_mv 10.1038/s41596-020-00413-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2469092214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650159418</galeid><sourcerecordid>A650159418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-3a7e70b240bb5f7528bdf1d65bf3bf06214298532423eef079487c3cf44503513</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1paR7tH-iiGLppFk71tKxlSF-BQKGPbYUsXxkNtjXVlUPz76vJpA1TStFCQvrOgXN1quoFJeeU8O4NCip12xBGGkIE5Q15VB1TJUnDlNaP786iYbTTR9UJ4qZAirfqaXXEOdOaSn5cfX8bxpDtVG8j5m2KDhDDMtZ2Geow2xFqhHGGJdsc4lL7mOrYb8DlcAMFstMtBqyjr12cYgoz5BRcncC6HY_PqifeTgjP7_fT6tv7d18vPzbXnz5cXV5cN04ykhtuFSjSM0H6XnolWdcPng6t7D3vPWkZFUx3kjPBOIAnSotOOe68EJJwSflp9XrvWyL8WAGzmQM6mCa7QFzRMNFqolnxKeirv9BNXFNJsqPK8ChjhD9Qo53AhMXHnKzbmZqLtkBSC9oV6vwfVFkDzMHFBXwo9weCswNBYTL8zKNdEc3Vl8-HLNuzLkXEBN5sy4BtujWUmF0BzL4AphTA3BXAkCJ6eZ9u7WcY_kh-_3gB-B7A8rSMkB7i_8f2F6gCuKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475012203</pqid></control><display><type>article</type><title>Digital postprocessing and image segmentation for objective analysis of colorimetric reactions</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Woolf, M. Shane ; Dignan, Leah M. ; Scott, Anchi T. ; Landers, James P.</creator><creatorcontrib>Woolf, M. Shane ; Dignan, Leah M. ; Scott, Anchi T. ; Landers, James P.</creatorcontrib><description>Recently, there has been an explosion of scientific literature describing the use of colorimetry for monitoring the progression or the endpoint result of colorimetric reactions. The availability of inexpensive imaging technology (e.g., scanners, Raspberry Pi, smartphones and other sub-$50 digital cameras) has lowered the barrier to accessing cost-efficient, objective detection methodologies. However, to exploit these imaging devices as low-cost colorimetric detectors, it is paramount that they interface with flexible software that is capable of image segmentation and probing a variety of color spaces (RGB, HSB, Y’UV, L*a*b*, etc.). Development of tailor-made software (e.g., smartphone applications) for advanced image analysis requires complex, custom-written processing algorithms, advanced computer programming knowledge and/or expertise in physics, mathematics, pattern recognition and computer vision and learning. Freeware programs, such as ImageJ, offer an alternative, affordable path to robust image analysis. Here we describe a protocol that uses the ImageJ program to process images of colorimetric experiments. In practice, this protocol consists of three distinct workflow options. This protocol is accessible to uninitiated users with little experience in image processing or color science and does not require fluorescence signals, expensive imaging equipment or custom-written algorithms. We anticipate that total analysis time per region of interest is ~6 min for new users and &lt;3 min for experienced users, although initial color threshold determination might take longer. This protocol provides ImageJ-based workflows for the analysis of images obtained from colorimetric assays. New users can take advantage of a basic workflow; more experienced users can benefit from more advanced analysis procedures.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-020-00413-0</identifier><identifier>PMID: 33299153</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2196/2197 ; 631/1647/794 ; 639/638/11 ; 639/638/45 ; Algorithms ; Analysis ; Analytical Chemistry ; Applications programs ; Biological assay ; Biological Techniques ; Biomedical and Life Sciences ; Cameras ; Color ; Colorimetric analysis ; Colorimetry ; Colorimetry - instrumentation ; Colorimetry - methods ; Coloring Agents - analysis ; Computational Biology/Bioinformatics ; Computer programming ; Computer programs ; Computer vision ; Digital cameras ; Digital imaging ; Digitization ; Equipment Design ; Fluorescence ; Image analysis ; Image processing ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Lab-On-A-Chip Devices ; Life Sciences ; Methods ; Microarrays ; Optical properties ; Organic Chemistry ; Pattern recognition ; Protocol ; Robustness (mathematics) ; Scanners ; Signal processing ; Smartphones ; Software ; Technology application ; Workflow</subject><ispartof>Nature protocols, 2021-01, Vol.16 (1), p.218-238</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-3a7e70b240bb5f7528bdf1d65bf3bf06214298532423eef079487c3cf44503513</citedby><cites>FETCH-LOGICAL-c520t-3a7e70b240bb5f7528bdf1d65bf3bf06214298532423eef079487c3cf44503513</cites><orcidid>0000-0002-9310-1796 ; 0000-0001-8722-5410 ; 0000-0002-2924-0214 ; 0000-0002-4109-4205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33299153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woolf, M. Shane</creatorcontrib><creatorcontrib>Dignan, Leah M.</creatorcontrib><creatorcontrib>Scott, Anchi T.</creatorcontrib><creatorcontrib>Landers, James P.</creatorcontrib><title>Digital postprocessing and image segmentation for objective analysis of colorimetric reactions</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Recently, there has been an explosion of scientific literature describing the use of colorimetry for monitoring the progression or the endpoint result of colorimetric reactions. The availability of inexpensive imaging technology (e.g., scanners, Raspberry Pi, smartphones and other sub-$50 digital cameras) has lowered the barrier to accessing cost-efficient, objective detection methodologies. However, to exploit these imaging devices as low-cost colorimetric detectors, it is paramount that they interface with flexible software that is capable of image segmentation and probing a variety of color spaces (RGB, HSB, Y’UV, L*a*b*, etc.). Development of tailor-made software (e.g., smartphone applications) for advanced image analysis requires complex, custom-written processing algorithms, advanced computer programming knowledge and/or expertise in physics, mathematics, pattern recognition and computer vision and learning. Freeware programs, such as ImageJ, offer an alternative, affordable path to robust image analysis. Here we describe a protocol that uses the ImageJ program to process images of colorimetric experiments. In practice, this protocol consists of three distinct workflow options. This protocol is accessible to uninitiated users with little experience in image processing or color science and does not require fluorescence signals, expensive imaging equipment or custom-written algorithms. We anticipate that total analysis time per region of interest is ~6 min for new users and &lt;3 min for experienced users, although initial color threshold determination might take longer. This protocol provides ImageJ-based workflows for the analysis of images obtained from colorimetric assays. New users can take advantage of a basic workflow; more experienced users can benefit from more advanced analysis procedures.</description><subject>631/1647/2196/2197</subject><subject>631/1647/794</subject><subject>639/638/11</subject><subject>639/638/45</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Applications programs</subject><subject>Biological assay</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Cameras</subject><subject>Color</subject><subject>Colorimetric analysis</subject><subject>Colorimetry</subject><subject>Colorimetry - instrumentation</subject><subject>Colorimetry - methods</subject><subject>Coloring Agents - analysis</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer programming</subject><subject>Computer programs</subject><subject>Computer vision</subject><subject>Digital cameras</subject><subject>Digital imaging</subject><subject>Digitization</subject><subject>Equipment Design</subject><subject>Fluorescence</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Lab-On-A-Chip Devices</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Optical properties</subject><subject>Organic Chemistry</subject><subject>Pattern recognition</subject><subject>Protocol</subject><subject>Robustness (mathematics)</subject><subject>Scanners</subject><subject>Signal processing</subject><subject>Smartphones</subject><subject>Software</subject><subject>Technology application</subject><subject>Workflow</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kktr3DAUhU1paR7tH-iiGLppFk71tKxlSF-BQKGPbYUsXxkNtjXVlUPz76vJpA1TStFCQvrOgXN1quoFJeeU8O4NCip12xBGGkIE5Q15VB1TJUnDlNaP786iYbTTR9UJ4qZAirfqaXXEOdOaSn5cfX8bxpDtVG8j5m2KDhDDMtZ2Geow2xFqhHGGJdsc4lL7mOrYb8DlcAMFstMtBqyjr12cYgoz5BRcncC6HY_PqifeTgjP7_fT6tv7d18vPzbXnz5cXV5cN04ykhtuFSjSM0H6XnolWdcPng6t7D3vPWkZFUx3kjPBOIAnSotOOe68EJJwSflp9XrvWyL8WAGzmQM6mCa7QFzRMNFqolnxKeirv9BNXFNJsqPK8ChjhD9Qo53AhMXHnKzbmZqLtkBSC9oV6vwfVFkDzMHFBXwo9weCswNBYTL8zKNdEc3Vl8-HLNuzLkXEBN5sy4BtujWUmF0BzL4AphTA3BXAkCJ6eZ9u7WcY_kh-_3gB-B7A8rSMkB7i_8f2F6gCuKs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Woolf, M. Shane</creator><creator>Dignan, Leah M.</creator><creator>Scott, Anchi T.</creator><creator>Landers, James P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9310-1796</orcidid><orcidid>https://orcid.org/0000-0001-8722-5410</orcidid><orcidid>https://orcid.org/0000-0002-2924-0214</orcidid><orcidid>https://orcid.org/0000-0002-4109-4205</orcidid></search><sort><creationdate>20210101</creationdate><title>Digital postprocessing and image segmentation for objective analysis of colorimetric reactions</title><author>Woolf, M. Shane ; Dignan, Leah M. ; Scott, Anchi T. ; Landers, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-3a7e70b240bb5f7528bdf1d65bf3bf06214298532423eef079487c3cf44503513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/2196/2197</topic><topic>631/1647/794</topic><topic>639/638/11</topic><topic>639/638/45</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Applications programs</topic><topic>Biological assay</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Cameras</topic><topic>Color</topic><topic>Colorimetric analysis</topic><topic>Colorimetry</topic><topic>Colorimetry - instrumentation</topic><topic>Colorimetry - methods</topic><topic>Coloring Agents - analysis</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer programming</topic><topic>Computer programs</topic><topic>Computer vision</topic><topic>Digital cameras</topic><topic>Digital imaging</topic><topic>Digitization</topic><topic>Equipment Design</topic><topic>Fluorescence</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Lab-On-A-Chip Devices</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Optical properties</topic><topic>Organic Chemistry</topic><topic>Pattern recognition</topic><topic>Protocol</topic><topic>Robustness (mathematics)</topic><topic>Scanners</topic><topic>Signal processing</topic><topic>Smartphones</topic><topic>Software</topic><topic>Technology application</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woolf, M. Shane</creatorcontrib><creatorcontrib>Dignan, Leah M.</creatorcontrib><creatorcontrib>Scott, Anchi T.</creatorcontrib><creatorcontrib>Landers, James P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woolf, M. Shane</au><au>Dignan, Leah M.</au><au>Scott, Anchi T.</au><au>Landers, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital postprocessing and image segmentation for objective analysis of colorimetric reactions</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>218</spage><epage>238</epage><pages>218-238</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>Recently, there has been an explosion of scientific literature describing the use of colorimetry for monitoring the progression or the endpoint result of colorimetric reactions. The availability of inexpensive imaging technology (e.g., scanners, Raspberry Pi, smartphones and other sub-$50 digital cameras) has lowered the barrier to accessing cost-efficient, objective detection methodologies. However, to exploit these imaging devices as low-cost colorimetric detectors, it is paramount that they interface with flexible software that is capable of image segmentation and probing a variety of color spaces (RGB, HSB, Y’UV, L*a*b*, etc.). Development of tailor-made software (e.g., smartphone applications) for advanced image analysis requires complex, custom-written processing algorithms, advanced computer programming knowledge and/or expertise in physics, mathematics, pattern recognition and computer vision and learning. Freeware programs, such as ImageJ, offer an alternative, affordable path to robust image analysis. Here we describe a protocol that uses the ImageJ program to process images of colorimetric experiments. In practice, this protocol consists of three distinct workflow options. This protocol is accessible to uninitiated users with little experience in image processing or color science and does not require fluorescence signals, expensive imaging equipment or custom-written algorithms. We anticipate that total analysis time per region of interest is ~6 min for new users and &lt;3 min for experienced users, although initial color threshold determination might take longer. This protocol provides ImageJ-based workflows for the analysis of images obtained from colorimetric assays. New users can take advantage of a basic workflow; more experienced users can benefit from more advanced analysis procedures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33299153</pmid><doi>10.1038/s41596-020-00413-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9310-1796</orcidid><orcidid>https://orcid.org/0000-0001-8722-5410</orcidid><orcidid>https://orcid.org/0000-0002-2924-0214</orcidid><orcidid>https://orcid.org/0000-0002-4109-4205</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2021-01, Vol.16 (1), p.218-238
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_2469092214
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/2196/2197
631/1647/794
639/638/11
639/638/45
Algorithms
Analysis
Analytical Chemistry
Applications programs
Biological assay
Biological Techniques
Biomedical and Life Sciences
Cameras
Color
Colorimetric analysis
Colorimetry
Colorimetry - instrumentation
Colorimetry - methods
Coloring Agents - analysis
Computational Biology/Bioinformatics
Computer programming
Computer programs
Computer vision
Digital cameras
Digital imaging
Digitization
Equipment Design
Fluorescence
Image analysis
Image processing
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Image segmentation
Lab-On-A-Chip Devices
Life Sciences
Methods
Microarrays
Optical properties
Organic Chemistry
Pattern recognition
Protocol
Robustness (mathematics)
Scanners
Signal processing
Smartphones
Software
Technology application
Workflow
title Digital postprocessing and image segmentation for objective analysis of colorimetric reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20postprocessing%20and%20image%20segmentation%20for%20objective%20analysis%20of%20colorimetric%20reactions&rft.jtitle=Nature%20protocols&rft.au=Woolf,%20M.%20Shane&rft.date=2021-01-01&rft.volume=16&rft.issue=1&rft.spage=218&rft.epage=238&rft.pages=218-238&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-020-00413-0&rft_dat=%3Cgale_proqu%3EA650159418%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475012203&rft_id=info:pmid/33299153&rft_galeid=A650159418&rfr_iscdi=true