Capillary condensation under atomic-scale confinement
Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other i...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-12, Vol.588 (7837), p.250-253 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 7837 |
container_start_page | 250 |
container_title | Nature (London) |
container_volume | 588 |
creator | Yang, Qian Sun, P. Z. Fumagalli, L. Stebunov, Y. V. Haigh, S. J. Zhou, Z. W. Grigorieva, I. V. Wang, F. C. Geim, A. K. |
description | Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries
1
–
4
. The century-old Kelvin equation
5
is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres
1
–
4
,
6
–
14
. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules
1
–
22
. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls
23
–
25
, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules
20
,
21
. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.
In the tiniest of capillaries, barely larger than a water molecule, condensation is surprisingly predictable from the macroscopic Kelvin condensation equation, a coincidence partially owing to elastic deformation of the capillary walls. |
doi_str_mv | 10.1038/s41586-020-2978-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2469090586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649562262</galeid><sourcerecordid>A649562262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-aeb548d5259cd30f3f15237aabafb27c7f188b5124f04d0bd000b2ef2c084cb33</originalsourceid><addsrcrecordid>eNp1kkuLFDEUhYMoTjv6A9xIoxtdZMw7qeXQ-BgYEHysQyp102SoSnqSKhj_vWl6dGxpySIh97uHm5OD0EtKLijh5n0VVBqFCSOYddpg-gitqNAKC2X0Y7QihBlMDFdn6FmtN4QQSbV4is44Z11HTbdCcuN2cRxd-bn2OQ2QqptjTuulncvazXmKHlfvRtjXQ0wwQZqfoyfBjRVe3O_n6MfHD983n_H1l09Xm8tr7KWWM3bQS2EGyWTnB04CD1Qyrp3rXeiZ9jpQY3pJmQhEDKQf2oQ9g8A8McL3nJ-jtwfdXcm3C9TZTrF6aPMmyEu1TKiOdKSZ0NA3_6A3eSmpTdcozYVQXMsHatteZGMKeS7O70XtpRKdVIwp1ih8gtpCguLGnCDEdn3Evz7B-128tX9DFyegtgZoHp9UfXfU0JgZ7uatW2q1V9--HrP0wPqSay0Q7K7Eqf2qpcTus2IPWbEtK3afFUtbz6t7x5Z-guFPx-9wNIAdgNpKaQvlwdL_q_4CaIrEcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473446375</pqid></control><display><type>article</type><title>Capillary condensation under atomic-scale confinement</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Qian ; Sun, P. Z. ; Fumagalli, L. ; Stebunov, Y. V. ; Haigh, S. J. ; Zhou, Z. W. ; Grigorieva, I. V. ; Wang, F. C. ; Geim, A. K.</creator><creatorcontrib>Yang, Qian ; Sun, P. Z. ; Fumagalli, L. ; Stebunov, Y. V. ; Haigh, S. J. ; Zhou, Z. W. ; Grigorieva, I. V. ; Wang, F. C. ; Geim, A. K.</creatorcontrib><description>Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries
1
–
4
. The century-old Kelvin equation
5
is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres
1
–
4
,
6
–
14
. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules
1
–
22
. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls
23
–
25
, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules
20
,
21
. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.
In the tiniest of capillaries, barely larger than a water molecule, condensation is surprisingly predictable from the macroscopic Kelvin condensation equation, a coincidence partially owing to elastic deformation of the capillary walls.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2978-1</identifier><identifier>PMID: 33299189</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 142/136 ; 639/301/357/1018 ; 639/766/119 ; 639/925/927 ; Capillaries ; Capillarity ; Condensation ; Confinement ; Contact angle ; Crystals ; Diameters ; Elastic deformation ; Food industry ; Graphene ; Graphite ; Humanities and Social Sciences ; Humidity ; Hydrophilicity ; Menisci ; Mica ; Microscopy ; multidisciplinary ; Observations ; Porous media ; Science ; Science (multidisciplinary) ; Silicon nitride</subject><ispartof>Nature (London), 2020-12, Vol.588 (7837), p.250-253</ispartof><rights>Crown 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-aeb548d5259cd30f3f15237aabafb27c7f188b5124f04d0bd000b2ef2c084cb33</citedby><cites>FETCH-LOGICAL-c575t-aeb548d5259cd30f3f15237aabafb27c7f188b5124f04d0bd000b2ef2c084cb33</cites><orcidid>0000-0001-5991-7778 ; 0000-0002-5954-3881 ; 0000-0001-5509-6706 ; 0000-0003-2861-8331 ; 0000-0002-6203-7867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33299189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Sun, P. Z.</creatorcontrib><creatorcontrib>Fumagalli, L.</creatorcontrib><creatorcontrib>Stebunov, Y. V.</creatorcontrib><creatorcontrib>Haigh, S. J.</creatorcontrib><creatorcontrib>Zhou, Z. W.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Wang, F. C.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><title>Capillary condensation under atomic-scale confinement</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries
1
–
4
. The century-old Kelvin equation
5
is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres
1
–
4
,
6
–
14
. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules
1
–
22
. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls
23
–
25
, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules
20
,
21
. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.
In the tiniest of capillaries, barely larger than a water molecule, condensation is surprisingly predictable from the macroscopic Kelvin condensation equation, a coincidence partially owing to elastic deformation of the capillary walls.</description><subject>142/126</subject><subject>142/136</subject><subject>639/301/357/1018</subject><subject>639/766/119</subject><subject>639/925/927</subject><subject>Capillaries</subject><subject>Capillarity</subject><subject>Condensation</subject><subject>Confinement</subject><subject>Contact angle</subject><subject>Crystals</subject><subject>Diameters</subject><subject>Elastic deformation</subject><subject>Food industry</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Humanities and Social Sciences</subject><subject>Humidity</subject><subject>Hydrophilicity</subject><subject>Menisci</subject><subject>Mica</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Porous media</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon nitride</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kkuLFDEUhYMoTjv6A9xIoxtdZMw7qeXQ-BgYEHysQyp102SoSnqSKhj_vWl6dGxpySIh97uHm5OD0EtKLijh5n0VVBqFCSOYddpg-gitqNAKC2X0Y7QihBlMDFdn6FmtN4QQSbV4is44Z11HTbdCcuN2cRxd-bn2OQ2QqptjTuulncvazXmKHlfvRtjXQ0wwQZqfoyfBjRVe3O_n6MfHD983n_H1l09Xm8tr7KWWM3bQS2EGyWTnB04CD1Qyrp3rXeiZ9jpQY3pJmQhEDKQf2oQ9g8A8McL3nJ-jtwfdXcm3C9TZTrF6aPMmyEu1TKiOdKSZ0NA3_6A3eSmpTdcozYVQXMsHatteZGMKeS7O70XtpRKdVIwp1ih8gtpCguLGnCDEdn3Evz7B-128tX9DFyegtgZoHp9UfXfU0JgZ7uatW2q1V9--HrP0wPqSay0Q7K7Eqf2qpcTus2IPWbEtK3afFUtbz6t7x5Z-guFPx-9wNIAdgNpKaQvlwdL_q_4CaIrEcw</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Yang, Qian</creator><creator>Sun, P. Z.</creator><creator>Fumagalli, L.</creator><creator>Stebunov, Y. V.</creator><creator>Haigh, S. J.</creator><creator>Zhou, Z. W.</creator><creator>Grigorieva, I. V.</creator><creator>Wang, F. C.</creator><creator>Geim, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0002-5954-3881</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000-0002-6203-7867</orcidid></search><sort><creationdate>20201210</creationdate><title>Capillary condensation under atomic-scale confinement</title><author>Yang, Qian ; Sun, P. Z. ; Fumagalli, L. ; Stebunov, Y. V. ; Haigh, S. J. ; Zhou, Z. W. ; Grigorieva, I. V. ; Wang, F. C. ; Geim, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-aeb548d5259cd30f3f15237aabafb27c7f188b5124f04d0bd000b2ef2c084cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>142/126</topic><topic>142/136</topic><topic>639/301/357/1018</topic><topic>639/766/119</topic><topic>639/925/927</topic><topic>Capillaries</topic><topic>Capillarity</topic><topic>Condensation</topic><topic>Confinement</topic><topic>Contact angle</topic><topic>Crystals</topic><topic>Diameters</topic><topic>Elastic deformation</topic><topic>Food industry</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Humanities and Social Sciences</topic><topic>Humidity</topic><topic>Hydrophilicity</topic><topic>Menisci</topic><topic>Mica</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Porous media</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Sun, P. Z.</creatorcontrib><creatorcontrib>Fumagalli, L.</creatorcontrib><creatorcontrib>Stebunov, Y. V.</creatorcontrib><creatorcontrib>Haigh, S. J.</creatorcontrib><creatorcontrib>Zhou, Z. W.</creatorcontrib><creatorcontrib>Grigorieva, I. V.</creatorcontrib><creatorcontrib>Wang, F. C.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qian</au><au>Sun, P. Z.</au><au>Fumagalli, L.</au><au>Stebunov, Y. V.</au><au>Haigh, S. J.</au><au>Zhou, Z. W.</au><au>Grigorieva, I. V.</au><au>Wang, F. C.</au><au>Geim, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary condensation under atomic-scale confinement</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>588</volume><issue>7837</issue><spage>250</spage><epage>253</epage><pages>250-253</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries
1
–
4
. The century-old Kelvin equation
5
is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres
1
–
4
,
6
–
14
. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules
1
–
22
. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls
23
–
25
, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules
20
,
21
. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.
In the tiniest of capillaries, barely larger than a water molecule, condensation is surprisingly predictable from the macroscopic Kelvin condensation equation, a coincidence partially owing to elastic deformation of the capillary walls.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33299189</pmid><doi>10.1038/s41586-020-2978-1</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5991-7778</orcidid><orcidid>https://orcid.org/0000-0002-5954-3881</orcidid><orcidid>https://orcid.org/0000-0001-5509-6706</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><orcidid>https://orcid.org/0000-0002-6203-7867</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7837), p.250-253 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2469090586 |
source | Nature; Alma/SFX Local Collection |
subjects | 142/126 142/136 639/301/357/1018 639/766/119 639/925/927 Capillaries Capillarity Condensation Confinement Contact angle Crystals Diameters Elastic deformation Food industry Graphene Graphite Humanities and Social Sciences Humidity Hydrophilicity Menisci Mica Microscopy multidisciplinary Observations Porous media Science Science (multidisciplinary) Silicon nitride |
title | Capillary condensation under atomic-scale confinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20condensation%20under%20atomic-scale%20confinement&rft.jtitle=Nature%20(London)&rft.au=Yang,%20Qian&rft.date=2020-12-10&rft.volume=588&rft.issue=7837&rft.spage=250&rft.epage=253&rft.pages=250-253&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2978-1&rft_dat=%3Cgale_proqu%3EA649562262%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473446375&rft_id=info:pmid/33299189&rft_galeid=A649562262&rfr_iscdi=true |