Saliva for diagnosis of SARS‐CoV‐2: First report from India

There are very few studies in search of an alternate and convenient diagnostic tool which can substitute nasopharyngeal swab (NPS) specimen for detection of SARS‐CoV‐2. In the study we analyzed, the comparison and agreement between the feasibility of using the saliva in comparison to NPS for diagnos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2021-04, Vol.93 (4), p.2529-2533
Hauptverfasser: Bhattacharya, Debdutta, Parai, Debaprasad, Rout, Usha K., Dash, Pujarini, Nanda, Rashmi R., Dash, Girish C., Kanungo, Srikanta, Palo, Subrata K., Giri, Sidhartha, Choudhary, Hari R., Kshatri, Jaya S., Turuk, Jyotirmayee, Mishra, Bijay K., Lenka, Rajesh K., Dash, Saroj, Pati, Sanghamitra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2533
container_issue 4
container_start_page 2529
container_title Journal of medical virology
container_volume 93
creator Bhattacharya, Debdutta
Parai, Debaprasad
Rout, Usha K.
Dash, Pujarini
Nanda, Rashmi R.
Dash, Girish C.
Kanungo, Srikanta
Palo, Subrata K.
Giri, Sidhartha
Choudhary, Hari R.
Kshatri, Jaya S.
Turuk, Jyotirmayee
Mishra, Bijay K.
Lenka, Rajesh K.
Dash, Saroj
Pati, Sanghamitra
description There are very few studies in search of an alternate and convenient diagnostic tool which can substitute nasopharyngeal swab (NPS) specimen for detection of SARS‐CoV‐2. In the study we analyzed, the comparison and agreement between the feasibility of using the saliva in comparison to NPS for diagnosis of SARS‐CoV‐2. A total number of 74 patients were enrolled for this study. We analyzed and compared the NPS and saliva specimen collected within 48 h after the symptom onset. We carried out real‐time quantitative polymerase chain reaction, gene sequencing for the detection and determination SARS‐CoV‐2 specific genes. Phylogenetic tree was constructed to establish the isolation of viral RNA from saliva. We used the Bland–Altman model to identify the agreement between two specimens. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene (mean, 27.07; 95% confidence interval [CI], 25.62 to 28.52) in saliva methods than that of NPS (mean 28.24; 95% CI, 26.62 to 29.85) specimen although the difference is statistically nonsignificant (p > .05). Bland–Altman analysis produced relatively smaller bias and high agreement between these two clinical specimens. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis and the collection method would reduce the exposure risk of frontline health workers which is one of the major concerns in primary healthcare settings. Highlights We analysed and compared the NPS and saliva specimen collected from 74 individual within 48 h after the symptom onset. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene in saliva methods than that of NPS specimen. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis.
doi_str_mv 10.1002/jmv.26719
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468670272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490130180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4829-3ad2a803ac246c1d3747fa9691c0838eb044358411b5f3cb98b9d21e82d519a43</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQgBdRbK0efAEJeNFD2tmfbHa9SClWKxXBaq9hk2wkJenW3abSm4_gM_okrrZ6ELzMXL75GD6EjjF0MQDpzepVl_AYyx3UxiB5KCHGu6gNmPGQcxy10IFzMwAQkpB91KKUyIgzaKPLiarKlQoKY4O8VM9z40oXmCKY9B8mH2_vAzP1k1wEw9K6ZWD1wthlUFhTB6O5PzhEe4WqnD7a7g56Gl49Dm7C8f31aNAfhxkTRIZU5UQJoCojjGc4pzGLCyW5xBkIKnQKjNFIMIzTqKBZKkUqc4K1IHmEpWK0g8423oU1L412y6QuXaarSs21aVzitYLHQGLi0dM_6Mw0du6_85QETAH7TzrofENl1jhndZEsbFkru04wJF9VE181-a7q2ZOtsUlrnf-SPxk90NsAr2Wl1_-bktu76Ub5CTLWfzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490130180</pqid></control><display><type>article</type><title>Saliva for diagnosis of SARS‐CoV‐2: First report from India</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Bhattacharya, Debdutta ; Parai, Debaprasad ; Rout, Usha K. ; Dash, Pujarini ; Nanda, Rashmi R. ; Dash, Girish C. ; Kanungo, Srikanta ; Palo, Subrata K. ; Giri, Sidhartha ; Choudhary, Hari R. ; Kshatri, Jaya S. ; Turuk, Jyotirmayee ; Mishra, Bijay K. ; Lenka, Rajesh K. ; Dash, Saroj ; Pati, Sanghamitra</creator><creatorcontrib>Bhattacharya, Debdutta ; Parai, Debaprasad ; Rout, Usha K. ; Dash, Pujarini ; Nanda, Rashmi R. ; Dash, Girish C. ; Kanungo, Srikanta ; Palo, Subrata K. ; Giri, Sidhartha ; Choudhary, Hari R. ; Kshatri, Jaya S. ; Turuk, Jyotirmayee ; Mishra, Bijay K. ; Lenka, Rajesh K. ; Dash, Saroj ; Pati, Sanghamitra</creatorcontrib><description>There are very few studies in search of an alternate and convenient diagnostic tool which can substitute nasopharyngeal swab (NPS) specimen for detection of SARS‐CoV‐2. In the study we analyzed, the comparison and agreement between the feasibility of using the saliva in comparison to NPS for diagnosis of SARS‐CoV‐2. A total number of 74 patients were enrolled for this study. We analyzed and compared the NPS and saliva specimen collected within 48 h after the symptom onset. We carried out real‐time quantitative polymerase chain reaction, gene sequencing for the detection and determination SARS‐CoV‐2 specific genes. Phylogenetic tree was constructed to establish the isolation of viral RNA from saliva. We used the Bland–Altman model to identify the agreement between two specimens. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene (mean, 27.07; 95% confidence interval [CI], 25.62 to 28.52) in saliva methods than that of NPS (mean 28.24; 95% CI, 26.62 to 29.85) specimen although the difference is statistically nonsignificant (p &gt; .05). Bland–Altman analysis produced relatively smaller bias and high agreement between these two clinical specimens. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis and the collection method would reduce the exposure risk of frontline health workers which is one of the major concerns in primary healthcare settings. Highlights We analysed and compared the NPS and saliva specimen collected from 74 individual within 48 h after the symptom onset. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene in saliva methods than that of NPS specimen. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis.</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.26719</identifier><identifier>PMID: 33295640</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bland–Altman analysis ; Confidence intervals ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 - virology ; COVID-19 Testing - methods ; Diagnosis ; Gene sequencing ; Genes, Viral - genetics ; Health risks ; Humans ; India - epidemiology ; Medical personnel ; nasopharyngeal swab ; Nasopharynx ; Occupational exposure ; Orf1 gene ; Phylogenetics ; Phylogeny ; Polymerase chain reaction ; Real-Time Polymerase Chain Reaction - methods ; Ribonucleic acid ; RNA ; RNA, Viral - isolation &amp; purification ; S gene ; Saliva ; Saliva - virology ; SARS-CoV-2 - genetics ; SARS-CoV-2 - isolation &amp; purification ; SARS‐CoV‐2 ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Specimen Handling ; Statistical methods ; Virology</subject><ispartof>Journal of medical virology, 2021-04, Vol.93 (4), p.2529-2533</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4829-3ad2a803ac246c1d3747fa9691c0838eb044358411b5f3cb98b9d21e82d519a43</citedby><cites>FETCH-LOGICAL-c4829-3ad2a803ac246c1d3747fa9691c0838eb044358411b5f3cb98b9d21e82d519a43</cites><orcidid>0000-0001-5199-5288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.26719$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.26719$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33295640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, Debdutta</creatorcontrib><creatorcontrib>Parai, Debaprasad</creatorcontrib><creatorcontrib>Rout, Usha K.</creatorcontrib><creatorcontrib>Dash, Pujarini</creatorcontrib><creatorcontrib>Nanda, Rashmi R.</creatorcontrib><creatorcontrib>Dash, Girish C.</creatorcontrib><creatorcontrib>Kanungo, Srikanta</creatorcontrib><creatorcontrib>Palo, Subrata K.</creatorcontrib><creatorcontrib>Giri, Sidhartha</creatorcontrib><creatorcontrib>Choudhary, Hari R.</creatorcontrib><creatorcontrib>Kshatri, Jaya S.</creatorcontrib><creatorcontrib>Turuk, Jyotirmayee</creatorcontrib><creatorcontrib>Mishra, Bijay K.</creatorcontrib><creatorcontrib>Lenka, Rajesh K.</creatorcontrib><creatorcontrib>Dash, Saroj</creatorcontrib><creatorcontrib>Pati, Sanghamitra</creatorcontrib><title>Saliva for diagnosis of SARS‐CoV‐2: First report from India</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>There are very few studies in search of an alternate and convenient diagnostic tool which can substitute nasopharyngeal swab (NPS) specimen for detection of SARS‐CoV‐2. In the study we analyzed, the comparison and agreement between the feasibility of using the saliva in comparison to NPS for diagnosis of SARS‐CoV‐2. A total number of 74 patients were enrolled for this study. We analyzed and compared the NPS and saliva specimen collected within 48 h after the symptom onset. We carried out real‐time quantitative polymerase chain reaction, gene sequencing for the detection and determination SARS‐CoV‐2 specific genes. Phylogenetic tree was constructed to establish the isolation of viral RNA from saliva. We used the Bland–Altman model to identify the agreement between two specimens. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene (mean, 27.07; 95% confidence interval [CI], 25.62 to 28.52) in saliva methods than that of NPS (mean 28.24; 95% CI, 26.62 to 29.85) specimen although the difference is statistically nonsignificant (p &gt; .05). Bland–Altman analysis produced relatively smaller bias and high agreement between these two clinical specimens. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis and the collection method would reduce the exposure risk of frontline health workers which is one of the major concerns in primary healthcare settings. Highlights We analysed and compared the NPS and saliva specimen collected from 74 individual within 48 h after the symptom onset. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene in saliva methods than that of NPS specimen. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis.</description><subject>Bland–Altman analysis</subject><subject>Confidence intervals</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Testing - methods</subject><subject>Diagnosis</subject><subject>Gene sequencing</subject><subject>Genes, Viral - genetics</subject><subject>Health risks</subject><subject>Humans</subject><subject>India - epidemiology</subject><subject>Medical personnel</subject><subject>nasopharyngeal swab</subject><subject>Nasopharynx</subject><subject>Occupational exposure</subject><subject>Orf1 gene</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Real-Time Polymerase Chain Reaction - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Viral - isolation &amp; purification</subject><subject>S gene</subject><subject>Saliva</subject><subject>Saliva - virology</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - isolation &amp; purification</subject><subject>SARS‐CoV‐2</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Specimen Handling</subject><subject>Statistical methods</subject><subject>Virology</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1Kw0AQgBdRbK0efAEJeNFD2tmfbHa9SClWKxXBaq9hk2wkJenW3abSm4_gM_okrrZ6ELzMXL75GD6EjjF0MQDpzepVl_AYyx3UxiB5KCHGu6gNmPGQcxy10IFzMwAQkpB91KKUyIgzaKPLiarKlQoKY4O8VM9z40oXmCKY9B8mH2_vAzP1k1wEw9K6ZWD1wthlUFhTB6O5PzhEe4WqnD7a7g56Gl49Dm7C8f31aNAfhxkTRIZU5UQJoCojjGc4pzGLCyW5xBkIKnQKjNFIMIzTqKBZKkUqc4K1IHmEpWK0g8423oU1L412y6QuXaarSs21aVzitYLHQGLi0dM_6Mw0du6_85QETAH7TzrofENl1jhndZEsbFkru04wJF9VE181-a7q2ZOtsUlrnf-SPxk90NsAr2Wl1_-bktu76Ub5CTLWfzw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Bhattacharya, Debdutta</creator><creator>Parai, Debaprasad</creator><creator>Rout, Usha K.</creator><creator>Dash, Pujarini</creator><creator>Nanda, Rashmi R.</creator><creator>Dash, Girish C.</creator><creator>Kanungo, Srikanta</creator><creator>Palo, Subrata K.</creator><creator>Giri, Sidhartha</creator><creator>Choudhary, Hari R.</creator><creator>Kshatri, Jaya S.</creator><creator>Turuk, Jyotirmayee</creator><creator>Mishra, Bijay K.</creator><creator>Lenka, Rajesh K.</creator><creator>Dash, Saroj</creator><creator>Pati, Sanghamitra</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5199-5288</orcidid></search><sort><creationdate>202104</creationdate><title>Saliva for diagnosis of SARS‐CoV‐2: First report from India</title><author>Bhattacharya, Debdutta ; Parai, Debaprasad ; Rout, Usha K. ; Dash, Pujarini ; Nanda, Rashmi R. ; Dash, Girish C. ; Kanungo, Srikanta ; Palo, Subrata K. ; Giri, Sidhartha ; Choudhary, Hari R. ; Kshatri, Jaya S. ; Turuk, Jyotirmayee ; Mishra, Bijay K. ; Lenka, Rajesh K. ; Dash, Saroj ; Pati, Sanghamitra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4829-3ad2a803ac246c1d3747fa9691c0838eb044358411b5f3cb98b9d21e82d519a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bland–Altman analysis</topic><topic>Confidence intervals</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Testing - methods</topic><topic>Diagnosis</topic><topic>Gene sequencing</topic><topic>Genes, Viral - genetics</topic><topic>Health risks</topic><topic>Humans</topic><topic>India - epidemiology</topic><topic>Medical personnel</topic><topic>nasopharyngeal swab</topic><topic>Nasopharynx</topic><topic>Occupational exposure</topic><topic>Orf1 gene</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Real-Time Polymerase Chain Reaction - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Viral - isolation &amp; purification</topic><topic>S gene</topic><topic>Saliva</topic><topic>Saliva - virology</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - isolation &amp; purification</topic><topic>SARS‐CoV‐2</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Specimen Handling</topic><topic>Statistical methods</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Debdutta</creatorcontrib><creatorcontrib>Parai, Debaprasad</creatorcontrib><creatorcontrib>Rout, Usha K.</creatorcontrib><creatorcontrib>Dash, Pujarini</creatorcontrib><creatorcontrib>Nanda, Rashmi R.</creatorcontrib><creatorcontrib>Dash, Girish C.</creatorcontrib><creatorcontrib>Kanungo, Srikanta</creatorcontrib><creatorcontrib>Palo, Subrata K.</creatorcontrib><creatorcontrib>Giri, Sidhartha</creatorcontrib><creatorcontrib>Choudhary, Hari R.</creatorcontrib><creatorcontrib>Kshatri, Jaya S.</creatorcontrib><creatorcontrib>Turuk, Jyotirmayee</creatorcontrib><creatorcontrib>Mishra, Bijay K.</creatorcontrib><creatorcontrib>Lenka, Rajesh K.</creatorcontrib><creatorcontrib>Dash, Saroj</creatorcontrib><creatorcontrib>Pati, Sanghamitra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Debdutta</au><au>Parai, Debaprasad</au><au>Rout, Usha K.</au><au>Dash, Pujarini</au><au>Nanda, Rashmi R.</au><au>Dash, Girish C.</au><au>Kanungo, Srikanta</au><au>Palo, Subrata K.</au><au>Giri, Sidhartha</au><au>Choudhary, Hari R.</au><au>Kshatri, Jaya S.</au><au>Turuk, Jyotirmayee</au><au>Mishra, Bijay K.</au><au>Lenka, Rajesh K.</au><au>Dash, Saroj</au><au>Pati, Sanghamitra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saliva for diagnosis of SARS‐CoV‐2: First report from India</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>93</volume><issue>4</issue><spage>2529</spage><epage>2533</epage><pages>2529-2533</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>There are very few studies in search of an alternate and convenient diagnostic tool which can substitute nasopharyngeal swab (NPS) specimen for detection of SARS‐CoV‐2. In the study we analyzed, the comparison and agreement between the feasibility of using the saliva in comparison to NPS for diagnosis of SARS‐CoV‐2. A total number of 74 patients were enrolled for this study. We analyzed and compared the NPS and saliva specimen collected within 48 h after the symptom onset. We carried out real‐time quantitative polymerase chain reaction, gene sequencing for the detection and determination SARS‐CoV‐2 specific genes. Phylogenetic tree was constructed to establish the isolation of viral RNA from saliva. We used the Bland–Altman model to identify the agreement between two specimens. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene (mean, 27.07; 95% confidence interval [CI], 25.62 to 28.52) in saliva methods than that of NPS (mean 28.24; 95% CI, 26.62 to 29.85) specimen although the difference is statistically nonsignificant (p &gt; .05). Bland–Altman analysis produced relatively smaller bias and high agreement between these two clinical specimens. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis and the collection method would reduce the exposure risk of frontline health workers which is one of the major concerns in primary healthcare settings. Highlights We analysed and compared the NPS and saliva specimen collected from 74 individual within 48 h after the symptom onset. This study showed a lower cycle threshold (CT) mean value for the detection of SARS‐CoV‐2 ORF1 gene in saliva methods than that of NPS specimen. Phylogenetic analysis with the RdRp and S gene confirmed the presence of SARS‐CoV‐2 in the saliva samples. Saliva represented a promising tool in COVID‐19 diagnosis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33295640</pmid><doi>10.1002/jmv.26719</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5199-5288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6615
ispartof Journal of medical virology, 2021-04, Vol.93 (4), p.2529-2533
issn 0146-6615
1096-9071
language eng
recordid cdi_proquest_miscellaneous_2468670272
source MEDLINE; Wiley Online Library All Journals
subjects Bland–Altman analysis
Confidence intervals
COVID-19
COVID-19 - diagnosis
COVID-19 - epidemiology
COVID-19 - virology
COVID-19 Testing - methods
Diagnosis
Gene sequencing
Genes, Viral - genetics
Health risks
Humans
India - epidemiology
Medical personnel
nasopharyngeal swab
Nasopharynx
Occupational exposure
Orf1 gene
Phylogenetics
Phylogeny
Polymerase chain reaction
Real-Time Polymerase Chain Reaction - methods
Ribonucleic acid
RNA
RNA, Viral - isolation & purification
S gene
Saliva
Saliva - virology
SARS-CoV-2 - genetics
SARS-CoV-2 - isolation & purification
SARS‐CoV‐2
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Specimen Handling
Statistical methods
Virology
title Saliva for diagnosis of SARS‐CoV‐2: First report from India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saliva%20for%20diagnosis%20of%20SARS%E2%80%90CoV%E2%80%902:%20First%20report%20from%20India&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Bhattacharya,%20Debdutta&rft.date=2021-04&rft.volume=93&rft.issue=4&rft.spage=2529&rft.epage=2533&rft.pages=2529-2533&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.26719&rft_dat=%3Cproquest_cross%3E2490130180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490130180&rft_id=info:pmid/33295640&rfr_iscdi=true