Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers

Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-01, Vol.33 (3), p.e2000228-n/a
Hauptverfasser: Voss, Matthew G., Challa, J. Reddy, Scholes, D. Tyler, Yee, Patrick Y., Wu, Eric C., Liu, Xiao, Park, Sanghyun J., León Ruiz, Omar, Subramaniyan, Selvam, Chen, Mengdan, Jenekhe, Samson A., Wang, Xiaolin, Tolbert, Sarah H., Schwartz, Benjamin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2000228
container_title Advanced materials (Weinheim)
container_volume 33
creator Voss, Matthew G.
Challa, J. Reddy
Scholes, D. Tyler
Yee, Patrick Y.
Wu, Eric C.
Liu, Xiao
Park, Sanghyun J.
León Ruiz, Omar
Subramaniyan, Selvam
Chen, Mengdan
Jenekhe, Samson A.
Wang, Xiaolin
Tolbert, Sarah H.
Schwartz, Benjamin J.
description Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside. A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.
doi_str_mv 10.1002/adma.202000228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468658161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478751059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cJePGymTdp0vY4N6fCZIJ6Llmazoy2qUmr7L83Y1PBi5d8wC9PXh6EzoGMgBB6LfNKjiihJFxocoD6wCkMI5LyQ9QnKePDVERJD514vw4mFUQcox5jNBUArI_U1JkPU6_wzDqlsaxzvGhao2SJn82qlm3ntMe2wDemsaV0tt7KSrYmnEyNJ2-62upyg6e20Tme2HrdrWQbjk-23FTa-VN0VMjS67P9PkCvs9uXyf1wvrh7mIznQ8ViloRBIWacgIwjTXUskkKGhYGmhEsBgjLFqMqXQDgrNCihRB4lHCBXeRxFBRugq11u4-x7p32bVcYrXZay1rbzGY1EIngCAgK9_EPXtnN1mC6oOIl5-CQNarRTylnvnS6yxplKuk0GJNvWn23rz37qDw8u9rHdstL5D__uO4B0Bz5NqTf_xGXj6eP4N_wLkbGPzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478751059</pqid></control><display><type>article</type><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</creator><creatorcontrib>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</creatorcontrib><description>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside. A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000228</identifier><identifier>PMID: 33296113</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bipolarons ; Carrier density ; Charge density ; Charge materials ; Current carriers ; Density functional theory ; donor–acceptor copolymers ; Dopants ; Doping ; Electrical resistivity ; Excitation spectra ; Ferric chloride ; Iron chlorides ; Materials science ; molecular dopants ; Polarons ; Polymers ; semiconducting polymers ; Spectrum analysis ; Tetracyanoquinodimethane ; transient absorption spectroscopy</subject><ispartof>Advanced materials (Weinheim), 2021-01, Vol.33 (3), p.e2000228-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</citedby><cites>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</cites><orcidid>0000-0003-3257-9152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33296113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voss, Matthew G.</creatorcontrib><creatorcontrib>Challa, J. Reddy</creatorcontrib><creatorcontrib>Scholes, D. Tyler</creatorcontrib><creatorcontrib>Yee, Patrick Y.</creatorcontrib><creatorcontrib>Wu, Eric C.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Park, Sanghyun J.</creatorcontrib><creatorcontrib>León Ruiz, Omar</creatorcontrib><creatorcontrib>Subramaniyan, Selvam</creatorcontrib><creatorcontrib>Chen, Mengdan</creatorcontrib><creatorcontrib>Jenekhe, Samson A.</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Tolbert, Sarah H.</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside. A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</description><subject>bipolarons</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Charge materials</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>donor–acceptor copolymers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Excitation spectra</subject><subject>Ferric chloride</subject><subject>Iron chlorides</subject><subject>Materials science</subject><subject>molecular dopants</subject><subject>Polarons</subject><subject>Polymers</subject><subject>semiconducting polymers</subject><subject>Spectrum analysis</subject><subject>Tetracyanoquinodimethane</subject><subject>transient absorption spectroscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipvTq0cJePGymTdp0vY4N6fCZIJ6Llmazoy2qUmr7L83Y1PBi5d8wC9PXh6EzoGMgBB6LfNKjiihJFxocoD6wCkMI5LyQ9QnKePDVERJD514vw4mFUQcox5jNBUArI_U1JkPU6_wzDqlsaxzvGhao2SJn82qlm3ntMe2wDemsaV0tt7KSrYmnEyNJ2-62upyg6e20Tme2HrdrWQbjk-23FTa-VN0VMjS67P9PkCvs9uXyf1wvrh7mIznQ8ViloRBIWacgIwjTXUskkKGhYGmhEsBgjLFqMqXQDgrNCihRB4lHCBXeRxFBRugq11u4-x7p32bVcYrXZay1rbzGY1EIngCAgK9_EPXtnN1mC6oOIl5-CQNarRTylnvnS6yxplKuk0GJNvWn23rz37qDw8u9rHdstL5D__uO4B0Bz5NqTf_xGXj6eP4N_wLkbGPzg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Voss, Matthew G.</creator><creator>Challa, J. Reddy</creator><creator>Scholes, D. Tyler</creator><creator>Yee, Patrick Y.</creator><creator>Wu, Eric C.</creator><creator>Liu, Xiao</creator><creator>Park, Sanghyun J.</creator><creator>León Ruiz, Omar</creator><creator>Subramaniyan, Selvam</creator><creator>Chen, Mengdan</creator><creator>Jenekhe, Samson A.</creator><creator>Wang, Xiaolin</creator><creator>Tolbert, Sarah H.</creator><creator>Schwartz, Benjamin J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid></search><sort><creationdate>20210101</creationdate><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><author>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bipolarons</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Charge materials</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>donor–acceptor copolymers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Excitation spectra</topic><topic>Ferric chloride</topic><topic>Iron chlorides</topic><topic>Materials science</topic><topic>molecular dopants</topic><topic>Polarons</topic><topic>Polymers</topic><topic>semiconducting polymers</topic><topic>Spectrum analysis</topic><topic>Tetracyanoquinodimethane</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voss, Matthew G.</creatorcontrib><creatorcontrib>Challa, J. Reddy</creatorcontrib><creatorcontrib>Scholes, D. Tyler</creatorcontrib><creatorcontrib>Yee, Patrick Y.</creatorcontrib><creatorcontrib>Wu, Eric C.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Park, Sanghyun J.</creatorcontrib><creatorcontrib>León Ruiz, Omar</creatorcontrib><creatorcontrib>Subramaniyan, Selvam</creatorcontrib><creatorcontrib>Chen, Mengdan</creatorcontrib><creatorcontrib>Jenekhe, Samson A.</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Tolbert, Sarah H.</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voss, Matthew G.</au><au>Challa, J. Reddy</au><au>Scholes, D. Tyler</au><au>Yee, Patrick Y.</au><au>Wu, Eric C.</au><au>Liu, Xiao</au><au>Park, Sanghyun J.</au><au>León Ruiz, Omar</au><au>Subramaniyan, Selvam</au><au>Chen, Mengdan</au><au>Jenekhe, Samson A.</au><au>Wang, Xiaolin</au><au>Tolbert, Sarah H.</au><au>Schwartz, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>e2000228</spage><epage>n/a</epage><pages>e2000228-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside. A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33296113</pmid><doi>10.1002/adma.202000228</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-01, Vol.33 (3), p.e2000228-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2468658161
source Wiley Online Library Journals Frontfile Complete
subjects bipolarons
Carrier density
Charge density
Charge materials
Current carriers
Density functional theory
donor–acceptor copolymers
Dopants
Doping
Electrical resistivity
Excitation spectra
Ferric chloride
Iron chlorides
Materials science
molecular dopants
Polarons
Polymers
semiconducting polymers
Spectrum analysis
Tetracyanoquinodimethane
transient absorption spectroscopy
title Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20Force%20and%20Optical%20Signatures%20of%20Bipolaron%20Formation%20in%20Chemically%20Doped%20Conjugated%20Polymers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Voss,%20Matthew%20G.&rft.date=2021-01-01&rft.volume=33&rft.issue=3&rft.spage=e2000228&rft.epage=n/a&rft.pages=e2000228-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000228&rft_dat=%3Cproquest_cross%3E2478751059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478751059&rft_id=info:pmid/33296113&rfr_iscdi=true