Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers
Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-01, Vol.33 (3), p.e2000228-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2000228 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Voss, Matthew G. Challa, J. Reddy Scholes, D. Tyler Yee, Patrick Y. Wu, Eric C. Liu, Xiao Park, Sanghyun J. León Ruiz, Omar Subramaniyan, Selvam Chen, Mengdan Jenekhe, Samson A. Wang, Xiaolin Tolbert, Sarah H. Schwartz, Benjamin J. |
description | Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside.
A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems. |
doi_str_mv | 10.1002/adma.202000228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468658161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478751059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cJePGymTdp0vY4N6fCZIJ6Llmazoy2qUmr7L83Y1PBi5d8wC9PXh6EzoGMgBB6LfNKjiihJFxocoD6wCkMI5LyQ9QnKePDVERJD514vw4mFUQcox5jNBUArI_U1JkPU6_wzDqlsaxzvGhao2SJn82qlm3ntMe2wDemsaV0tt7KSrYmnEyNJ2-62upyg6e20Tme2HrdrWQbjk-23FTa-VN0VMjS67P9PkCvs9uXyf1wvrh7mIznQ8ViloRBIWacgIwjTXUskkKGhYGmhEsBgjLFqMqXQDgrNCihRB4lHCBXeRxFBRugq11u4-x7p32bVcYrXZay1rbzGY1EIngCAgK9_EPXtnN1mC6oOIl5-CQNarRTylnvnS6yxplKuk0GJNvWn23rz37qDw8u9rHdstL5D__uO4B0Bz5NqTf_xGXj6eP4N_wLkbGPzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478751059</pqid></control><display><type>article</type><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</creator><creatorcontrib>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</creatorcontrib><description>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside.
A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000228</identifier><identifier>PMID: 33296113</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bipolarons ; Carrier density ; Charge density ; Charge materials ; Current carriers ; Density functional theory ; donor–acceptor copolymers ; Dopants ; Doping ; Electrical resistivity ; Excitation spectra ; Ferric chloride ; Iron chlorides ; Materials science ; molecular dopants ; Polarons ; Polymers ; semiconducting polymers ; Spectrum analysis ; Tetracyanoquinodimethane ; transient absorption spectroscopy</subject><ispartof>Advanced materials (Weinheim), 2021-01, Vol.33 (3), p.e2000228-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</citedby><cites>FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</cites><orcidid>0000-0003-3257-9152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33296113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voss, Matthew G.</creatorcontrib><creatorcontrib>Challa, J. Reddy</creatorcontrib><creatorcontrib>Scholes, D. Tyler</creatorcontrib><creatorcontrib>Yee, Patrick Y.</creatorcontrib><creatorcontrib>Wu, Eric C.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Park, Sanghyun J.</creatorcontrib><creatorcontrib>León Ruiz, Omar</creatorcontrib><creatorcontrib>Subramaniyan, Selvam</creatorcontrib><creatorcontrib>Chen, Mengdan</creatorcontrib><creatorcontrib>Jenekhe, Samson A.</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Tolbert, Sarah H.</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside.
A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</description><subject>bipolarons</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Charge materials</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>donor–acceptor copolymers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Excitation spectra</subject><subject>Ferric chloride</subject><subject>Iron chlorides</subject><subject>Materials science</subject><subject>molecular dopants</subject><subject>Polarons</subject><subject>Polymers</subject><subject>semiconducting polymers</subject><subject>Spectrum analysis</subject><subject>Tetracyanoquinodimethane</subject><subject>transient absorption spectroscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipvTq0cJePGymTdp0vY4N6fCZIJ6Llmazoy2qUmr7L83Y1PBi5d8wC9PXh6EzoGMgBB6LfNKjiihJFxocoD6wCkMI5LyQ9QnKePDVERJD514vw4mFUQcox5jNBUArI_U1JkPU6_wzDqlsaxzvGhao2SJn82qlm3ntMe2wDemsaV0tt7KSrYmnEyNJ2-62upyg6e20Tme2HrdrWQbjk-23FTa-VN0VMjS67P9PkCvs9uXyf1wvrh7mIznQ8ViloRBIWacgIwjTXUskkKGhYGmhEsBgjLFqMqXQDgrNCihRB4lHCBXeRxFBRugq11u4-x7p32bVcYrXZay1rbzGY1EIngCAgK9_EPXtnN1mC6oOIl5-CQNarRTylnvnS6yxplKuk0GJNvWn23rz37qDw8u9rHdstL5D__uO4B0Bz5NqTf_xGXj6eP4N_wLkbGPzg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Voss, Matthew G.</creator><creator>Challa, J. Reddy</creator><creator>Scholes, D. Tyler</creator><creator>Yee, Patrick Y.</creator><creator>Wu, Eric C.</creator><creator>Liu, Xiao</creator><creator>Park, Sanghyun J.</creator><creator>León Ruiz, Omar</creator><creator>Subramaniyan, Selvam</creator><creator>Chen, Mengdan</creator><creator>Jenekhe, Samson A.</creator><creator>Wang, Xiaolin</creator><creator>Tolbert, Sarah H.</creator><creator>Schwartz, Benjamin J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid></search><sort><creationdate>20210101</creationdate><title>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</title><author>Voss, Matthew G. ; Challa, J. Reddy ; Scholes, D. Tyler ; Yee, Patrick Y. ; Wu, Eric C. ; Liu, Xiao ; Park, Sanghyun J. ; León Ruiz, Omar ; Subramaniyan, Selvam ; Chen, Mengdan ; Jenekhe, Samson A. ; Wang, Xiaolin ; Tolbert, Sarah H. ; Schwartz, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-96173501a74e2e768fa76831e205a61623c32cdb1053fe1c6c6d48511dcd744f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bipolarons</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Charge materials</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>donor–acceptor copolymers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Excitation spectra</topic><topic>Ferric chloride</topic><topic>Iron chlorides</topic><topic>Materials science</topic><topic>molecular dopants</topic><topic>Polarons</topic><topic>Polymers</topic><topic>semiconducting polymers</topic><topic>Spectrum analysis</topic><topic>Tetracyanoquinodimethane</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voss, Matthew G.</creatorcontrib><creatorcontrib>Challa, J. Reddy</creatorcontrib><creatorcontrib>Scholes, D. Tyler</creatorcontrib><creatorcontrib>Yee, Patrick Y.</creatorcontrib><creatorcontrib>Wu, Eric C.</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Park, Sanghyun J.</creatorcontrib><creatorcontrib>León Ruiz, Omar</creatorcontrib><creatorcontrib>Subramaniyan, Selvam</creatorcontrib><creatorcontrib>Chen, Mengdan</creatorcontrib><creatorcontrib>Jenekhe, Samson A.</creatorcontrib><creatorcontrib>Wang, Xiaolin</creatorcontrib><creatorcontrib>Tolbert, Sarah H.</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voss, Matthew G.</au><au>Challa, J. Reddy</au><au>Scholes, D. Tyler</au><au>Yee, Patrick Y.</au><au>Wu, Eric C.</au><au>Liu, Xiao</au><au>Park, Sanghyun J.</au><au>León Ruiz, Omar</au><au>Subramaniyan, Selvam</au><au>Chen, Mengdan</au><au>Jenekhe, Samson A.</au><au>Wang, Xiaolin</au><au>Tolbert, Sarah H.</au><au>Schwartz, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>e2000228</spage><epage>n/a</epage><pages>e2000228-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside.
A chemically doped donor–acceptor conjugated polymer is studied using ultrafast spectroscopy, showing conclusively that the carriers created by doping are exclusively bipolarons and not single polarons at all doping levels. DFT calculations show that the physical size of the donor unit is what determines the relative stability of polarons and bipolarons in push–pull semiconducting polymer systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33296113</pmid><doi>10.1002/adma.202000228</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-01, Vol.33 (3), p.e2000228-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2468658161 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bipolarons Carrier density Charge density Charge materials Current carriers Density functional theory donor–acceptor copolymers Dopants Doping Electrical resistivity Excitation spectra Ferric chloride Iron chlorides Materials science molecular dopants Polarons Polymers semiconducting polymers Spectrum analysis Tetracyanoquinodimethane transient absorption spectroscopy |
title | Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20Force%20and%20Optical%20Signatures%20of%20Bipolaron%20Formation%20in%20Chemically%20Doped%20Conjugated%20Polymers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Voss,%20Matthew%20G.&rft.date=2021-01-01&rft.volume=33&rft.issue=3&rft.spage=e2000228&rft.epage=n/a&rft.pages=e2000228-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000228&rft_dat=%3Cproquest_cross%3E2478751059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478751059&rft_id=info:pmid/33296113&rfr_iscdi=true |