nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2021-02, Vol.18 (2), p.203-211
Hauptverfasser: Isensee, Fabian, Jaeger, Paul F., Kohl, Simon A. A., Petersen, Jens, Maier-Hein, Klaus H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 2
container_start_page 203
container_title Nature methods
container_volume 18
creator Isensee, Fabian
Jaeger, Paul F.
Kohl, Simon A. A.
Petersen, Jens
Maier-Hein, Klaus H.
description Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. nnU-Net is a deep learning-based image segmentation method that automatically configures itself for diverse biological and medical image segmentation tasks. nnU-Net offers state-of-the-art performance as an out-of-the-box tool.
doi_str_mv 10.1038/s41592-020-01008-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468341213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655717282</galeid><sourcerecordid>A655717282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-6ed43aa3aee3eb50419a6f28745ccf6ae6a40f75519ca73d288fb36e40be02be3</originalsourceid><addsrcrecordid>eNp9kUtv1TAUhCMEog_4AyxQJDZsXI6fcdhVFS-pgg2V2FmOcxxcJfbFThb019eX21KBEPLClv3NaHymaV5QOKPA9ZsiqOwZAQYEKIAmN4-aYyqFJh0F-fj-DD09ak5KuQbgXDD5tDninGndK3rcfIvxinzG9W1r24KzJy5FH6Ythzi1C67f09j6lNsRcdfOaHOsD2SwBcd2CGnBMTg7t2GxE1aDacG42jWk-Kx54u1c8PndftpcvX_39eIjufzy4dPF-SVxUnYrUTgKbi23iBwHCYL2VnmmOyGd88qisgJ8JyXtne34WHP7gSsUMCCwAflp8_rgu8vpx4ZlNUsoDufZRkxbMUwozQVllFf01V_oddpyrOkqpZVioEA8UJOd0YTo05qt25uac1Uz045pVqmzf1B1jbiEOkP0od7_IWAHgcuplIze7HKdWv5pKJh9neZQp6l1ml91mpsqenmXeBvqqH9L7vurAD8AZbdvDPPDl_5jewvPxamn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486620604</pqid></control><display><type>article</type><title>nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Isensee, Fabian ; Jaeger, Paul F. ; Kohl, Simon A. A. ; Petersen, Jens ; Maier-Hein, Klaus H.</creator><creatorcontrib>Isensee, Fabian ; Jaeger, Paul F. ; Kohl, Simon A. A. ; Petersen, Jens ; Maier-Hein, Klaus H.</creatorcontrib><description>Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. nnU-Net is a deep learning-based image segmentation method that automatically configures itself for diverse biological and medical image segmentation tasks. nnU-Net offers state-of-the-art performance as an out-of-the-box tool.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-01008-z</identifier><identifier>PMID: 33288961</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1564 ; 692/308/575 ; Algorithms ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Computer architecture ; Datasets ; Deep Learning ; Diagnostic imaging ; Empirical analysis ; Health services ; Image analysis ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Life Sciences ; Machine learning ; Medical imaging ; Methods ; Neural Networks, Computer ; Post-production processing ; Proteomics ; Training</subject><ispartof>Nature methods, 2021-02, Vol.18 (2), p.203-211</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-6ed43aa3aee3eb50419a6f28745ccf6ae6a40f75519ca73d288fb36e40be02be3</citedby><cites>FETCH-LOGICAL-c557t-6ed43aa3aee3eb50419a6f28745ccf6ae6a40f75519ca73d288fb36e40be02be3</cites><orcidid>0000-0002-6626-2463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-01008-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-01008-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33288961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Jaeger, Paul F.</creatorcontrib><creatorcontrib>Kohl, Simon A. A.</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Maier-Hein, Klaus H.</creatorcontrib><title>nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. nnU-Net is a deep learning-based image segmentation method that automatically configures itself for diverse biological and medical image segmentation tasks. nnU-Net offers state-of-the-art performance as an out-of-the-box tool.</description><subject>631/114/1564</subject><subject>692/308/575</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Diagnostic imaging</subject><subject>Empirical analysis</subject><subject>Health services</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural Networks, Computer</subject><subject>Post-production processing</subject><subject>Proteomics</subject><subject>Training</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1TAUhCMEog_4AyxQJDZsXI6fcdhVFS-pgg2V2FmOcxxcJfbFThb019eX21KBEPLClv3NaHymaV5QOKPA9ZsiqOwZAQYEKIAmN4-aYyqFJh0F-fj-DD09ak5KuQbgXDD5tDninGndK3rcfIvxinzG9W1r24KzJy5FH6Ythzi1C67f09j6lNsRcdfOaHOsD2SwBcd2CGnBMTg7t2GxE1aDacG42jWk-Kx54u1c8PndftpcvX_39eIjufzy4dPF-SVxUnYrUTgKbi23iBwHCYL2VnmmOyGd88qisgJ8JyXtne34WHP7gSsUMCCwAflp8_rgu8vpx4ZlNUsoDufZRkxbMUwozQVllFf01V_oddpyrOkqpZVioEA8UJOd0YTo05qt25uac1Uz045pVqmzf1B1jbiEOkP0od7_IWAHgcuplIze7HKdWv5pKJh9neZQp6l1ml91mpsqenmXeBvqqH9L7vurAD8AZbdvDPPDl_5jewvPxamn</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Isensee, Fabian</creator><creator>Jaeger, Paul F.</creator><creator>Kohl, Simon A. A.</creator><creator>Petersen, Jens</creator><creator>Maier-Hein, Klaus H.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6626-2463</orcidid></search><sort><creationdate>20210201</creationdate><title>nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation</title><author>Isensee, Fabian ; Jaeger, Paul F. ; Kohl, Simon A. A. ; Petersen, Jens ; Maier-Hein, Klaus H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-6ed43aa3aee3eb50419a6f28745ccf6ae6a40f75519ca73d288fb36e40be02be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/1564</topic><topic>692/308/575</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Diagnostic imaging</topic><topic>Empirical analysis</topic><topic>Health services</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural Networks, Computer</topic><topic>Post-production processing</topic><topic>Proteomics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isensee, Fabian</creatorcontrib><creatorcontrib>Jaeger, Paul F.</creatorcontrib><creatorcontrib>Kohl, Simon A. A.</creatorcontrib><creatorcontrib>Petersen, Jens</creatorcontrib><creatorcontrib>Maier-Hein, Klaus H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isensee, Fabian</au><au>Jaeger, Paul F.</au><au>Kohl, Simon A. A.</au><au>Petersen, Jens</au><au>Maier-Hein, Klaus H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>203</spage><epage>211</epage><pages>203-211</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training. nnU-Net is a deep learning-based image segmentation method that automatically configures itself for diverse biological and medical image segmentation tasks. nnU-Net offers state-of-the-art performance as an out-of-the-box tool.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33288961</pmid><doi>10.1038/s41592-020-01008-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6626-2463</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2021-02, Vol.18 (2), p.203-211
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2468341213
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/114/1564
692/308/575
Algorithms
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Computer architecture
Datasets
Deep Learning
Diagnostic imaging
Empirical analysis
Health services
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Life Sciences
Machine learning
Medical imaging
Methods
Neural Networks, Computer
Post-production processing
Proteomics
Training
title nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=nnU-Net:%20a%20self-configuring%20method%20for%20deep%20learning-based%20biomedical%20image%20segmentation&rft.jtitle=Nature%20methods&rft.au=Isensee,%20Fabian&rft.date=2021-02-01&rft.volume=18&rft.issue=2&rft.spage=203&rft.epage=211&rft.pages=203-211&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-01008-z&rft_dat=%3Cgale_proqu%3EA655717282%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486620604&rft_id=info:pmid/33288961&rft_galeid=A655717282&rfr_iscdi=true