Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma

•Link Rate and Link Duration are suitable measures of dynamic functional connectivity within the EEG.•Patients with poor neurological outcome after cardiac arrest show less dynamics of brain functional connectivity.•Dynamic functional connectivity might improve outcome prediction of postanoxic coma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2021-01, Vol.132 (1), p.157-164
Hauptverfasser: Keijzer, H.M., Tjepkema-Cloostermans, M.C., Klijn, C.J.M., Blans, M., van Putten, M.J.A.M., Hofmeijer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 157
container_title Clinical neurophysiology
container_volume 132
creator Keijzer, H.M.
Tjepkema-Cloostermans, M.C.
Klijn, C.J.M.
Blans, M.
van Putten, M.J.A.M.
Hofmeijer, J.
description •Link Rate and Link Duration are suitable measures of dynamic functional connectivity within the EEG.•Patients with poor neurological outcome after cardiac arrest show less dynamics of brain functional connectivity.•Dynamic functional connectivity might improve outcome prediction of postanoxic coma based on quantitative EEG measures. Early EEG contains reliable information for outcome prediction of comatose patients after cardiac arrest. We introduce dynamic functional connectivity measures and estimate additional predictive values. We performed a prospective multicenter cohort study on continuous EEG for outcome prediction of comatose patients after cardiac arrest. We calculated Link Rates (LR) and Link Durations (LD) in the α, δ, and θ band, based on similarity of instantaneous frequencies in five-minute EEG epochs, hourly, during 3 days after cardiac arrest. We studied associations of LR and LD with good (Cerebral Performance Category (CPC) 1–2) or poor outcome (CPC 3–5) with univariate analyses. With random forest classification, we established EEG-based predictive models. We used receiver operating characteristics to estimate additional values of dynamic connectivity measures for outcome prediction. Of 683 patients, 369 (54%) had poor outcome. Patients with poor outcome had significantly lower LR and longer LD, with largest differences 12 h after cardiac arrest (LRθ 1.87 vs. 1.95 Hz and LDα 91 vs. 82 ms). Adding these measures to a model with classical EEG features increased sensitivity for reliable prediction of poor outcome from 34% to 38% at 12 h after cardiac arrest. Poor outcome is associated with lower dynamics of connectivity after cardiac arrest. Dynamic functional connectivity analysis may improve EEG based outcome prediction.
doi_str_mv 10.1016/j.clinph.2020.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468338568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245720305599</els_id><sourcerecordid>2468338568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4e1c9c4a967b00d3edbe895f1165ced13f1244bd12543c137f5338d364cfc2d83</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoTqffQCRHL515a5tdBJlzCgMv8xzS9CnLaJPZtMN9e1M6PXpK8uf3vOSH0B0lM0po9ribmdq6_XbGCBuiGWHiDF1RmbNEzlN2Hu9cyoSJNJ-g6xB2hJCcCHaJJpwzmfJ8foU2L0enG2tw1TvTWe90jY13DuLjYLsj9hXutoCXyxW2DrdQ64HCnce-74xvYCD2PnTa-e_YJ0b6Bl1Uug5wezqn6PN1uVm8JeuP1fvieZ0YQWSXCKBmboSeZ3lBSMmhLCBuXlGapQZKyivKhChKylLBDeV5lXIuS54JUxlWSj5FD2Pffeu_egidamwwUNfage-DYiKTsSLNBlSMqGl9CC1Uat_aRrdHRYkafKqdGn2qweeQRp-x7P40oS8aKP-KfgVG4GkEIP7zYKFVwVhwcX3bRoeq9Pb_CT-XXIiK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468338568</pqid></control><display><type>article</type><title>Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma</title><source>Elsevier ScienceDirect Journals</source><creator>Keijzer, H.M. ; Tjepkema-Cloostermans, M.C. ; Klijn, C.J.M. ; Blans, M. ; van Putten, M.J.A.M. ; Hofmeijer, J.</creator><creatorcontrib>Keijzer, H.M. ; Tjepkema-Cloostermans, M.C. ; Klijn, C.J.M. ; Blans, M. ; van Putten, M.J.A.M. ; Hofmeijer, J.</creatorcontrib><description>•Link Rate and Link Duration are suitable measures of dynamic functional connectivity within the EEG.•Patients with poor neurological outcome after cardiac arrest show less dynamics of brain functional connectivity.•Dynamic functional connectivity might improve outcome prediction of postanoxic coma based on quantitative EEG measures. Early EEG contains reliable information for outcome prediction of comatose patients after cardiac arrest. We introduce dynamic functional connectivity measures and estimate additional predictive values. We performed a prospective multicenter cohort study on continuous EEG for outcome prediction of comatose patients after cardiac arrest. We calculated Link Rates (LR) and Link Durations (LD) in the α, δ, and θ band, based on similarity of instantaneous frequencies in five-minute EEG epochs, hourly, during 3 days after cardiac arrest. We studied associations of LR and LD with good (Cerebral Performance Category (CPC) 1–2) or poor outcome (CPC 3–5) with univariate analyses. With random forest classification, we established EEG-based predictive models. We used receiver operating characteristics to estimate additional values of dynamic connectivity measures for outcome prediction. Of 683 patients, 369 (54%) had poor outcome. Patients with poor outcome had significantly lower LR and longer LD, with largest differences 12 h after cardiac arrest (LRθ 1.87 vs. 1.95 Hz and LDα 91 vs. 82 ms). Adding these measures to a model with classical EEG features increased sensitivity for reliable prediction of poor outcome from 34% to 38% at 12 h after cardiac arrest. Poor outcome is associated with lower dynamics of connectivity after cardiac arrest. Dynamic functional connectivity analysis may improve EEG based outcome prediction.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2020.10.024</identifier><identifier>PMID: 33285379</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Dynamic functional connectivity ; EEG ; Outcome ; Postanoxic coma</subject><ispartof>Clinical neurophysiology, 2021-01, Vol.132 (1), p.157-164</ispartof><rights>2020 International Federation of Clinical Neurophysiology</rights><rights>Copyright © 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4e1c9c4a967b00d3edbe895f1165ced13f1244bd12543c137f5338d364cfc2d83</citedby><cites>FETCH-LOGICAL-c408t-4e1c9c4a967b00d3edbe895f1165ced13f1244bd12543c137f5338d364cfc2d83</cites><orcidid>0000-0002-9889-1918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1388245720305599$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33285379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keijzer, H.M.</creatorcontrib><creatorcontrib>Tjepkema-Cloostermans, M.C.</creatorcontrib><creatorcontrib>Klijn, C.J.M.</creatorcontrib><creatorcontrib>Blans, M.</creatorcontrib><creatorcontrib>van Putten, M.J.A.M.</creatorcontrib><creatorcontrib>Hofmeijer, J.</creatorcontrib><title>Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•Link Rate and Link Duration are suitable measures of dynamic functional connectivity within the EEG.•Patients with poor neurological outcome after cardiac arrest show less dynamics of brain functional connectivity.•Dynamic functional connectivity might improve outcome prediction of postanoxic coma based on quantitative EEG measures. Early EEG contains reliable information for outcome prediction of comatose patients after cardiac arrest. We introduce dynamic functional connectivity measures and estimate additional predictive values. We performed a prospective multicenter cohort study on continuous EEG for outcome prediction of comatose patients after cardiac arrest. We calculated Link Rates (LR) and Link Durations (LD) in the α, δ, and θ band, based on similarity of instantaneous frequencies in five-minute EEG epochs, hourly, during 3 days after cardiac arrest. We studied associations of LR and LD with good (Cerebral Performance Category (CPC) 1–2) or poor outcome (CPC 3–5) with univariate analyses. With random forest classification, we established EEG-based predictive models. We used receiver operating characteristics to estimate additional values of dynamic connectivity measures for outcome prediction. Of 683 patients, 369 (54%) had poor outcome. Patients with poor outcome had significantly lower LR and longer LD, with largest differences 12 h after cardiac arrest (LRθ 1.87 vs. 1.95 Hz and LDα 91 vs. 82 ms). Adding these measures to a model with classical EEG features increased sensitivity for reliable prediction of poor outcome from 34% to 38% at 12 h after cardiac arrest. Poor outcome is associated with lower dynamics of connectivity after cardiac arrest. Dynamic functional connectivity analysis may improve EEG based outcome prediction.</description><subject>Dynamic functional connectivity</subject><subject>EEG</subject><subject>Outcome</subject><subject>Postanoxic coma</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoTqffQCRHL515a5tdBJlzCgMv8xzS9CnLaJPZtMN9e1M6PXpK8uf3vOSH0B0lM0po9ribmdq6_XbGCBuiGWHiDF1RmbNEzlN2Hu9cyoSJNJ-g6xB2hJCcCHaJJpwzmfJ8foU2L0enG2tw1TvTWe90jY13DuLjYLsj9hXutoCXyxW2DrdQ64HCnce-74xvYCD2PnTa-e_YJ0b6Bl1Uug5wezqn6PN1uVm8JeuP1fvieZ0YQWSXCKBmboSeZ3lBSMmhLCBuXlGapQZKyivKhChKylLBDeV5lXIuS54JUxlWSj5FD2Pffeu_egidamwwUNfage-DYiKTsSLNBlSMqGl9CC1Uat_aRrdHRYkafKqdGn2qweeQRp-x7P40oS8aKP-KfgVG4GkEIP7zYKFVwVhwcX3bRoeq9Pb_CT-XXIiK</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Keijzer, H.M.</creator><creator>Tjepkema-Cloostermans, M.C.</creator><creator>Klijn, C.J.M.</creator><creator>Blans, M.</creator><creator>van Putten, M.J.A.M.</creator><creator>Hofmeijer, J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9889-1918</orcidid></search><sort><creationdate>202101</creationdate><title>Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma</title><author>Keijzer, H.M. ; Tjepkema-Cloostermans, M.C. ; Klijn, C.J.M. ; Blans, M. ; van Putten, M.J.A.M. ; Hofmeijer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4e1c9c4a967b00d3edbe895f1165ced13f1244bd12543c137f5338d364cfc2d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic functional connectivity</topic><topic>EEG</topic><topic>Outcome</topic><topic>Postanoxic coma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keijzer, H.M.</creatorcontrib><creatorcontrib>Tjepkema-Cloostermans, M.C.</creatorcontrib><creatorcontrib>Klijn, C.J.M.</creatorcontrib><creatorcontrib>Blans, M.</creatorcontrib><creatorcontrib>van Putten, M.J.A.M.</creatorcontrib><creatorcontrib>Hofmeijer, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keijzer, H.M.</au><au>Tjepkema-Cloostermans, M.C.</au><au>Klijn, C.J.M.</au><au>Blans, M.</au><au>van Putten, M.J.A.M.</au><au>Hofmeijer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>132</volume><issue>1</issue><spage>157</spage><epage>164</epage><pages>157-164</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>•Link Rate and Link Duration are suitable measures of dynamic functional connectivity within the EEG.•Patients with poor neurological outcome after cardiac arrest show less dynamics of brain functional connectivity.•Dynamic functional connectivity might improve outcome prediction of postanoxic coma based on quantitative EEG measures. Early EEG contains reliable information for outcome prediction of comatose patients after cardiac arrest. We introduce dynamic functional connectivity measures and estimate additional predictive values. We performed a prospective multicenter cohort study on continuous EEG for outcome prediction of comatose patients after cardiac arrest. We calculated Link Rates (LR) and Link Durations (LD) in the α, δ, and θ band, based on similarity of instantaneous frequencies in five-minute EEG epochs, hourly, during 3 days after cardiac arrest. We studied associations of LR and LD with good (Cerebral Performance Category (CPC) 1–2) or poor outcome (CPC 3–5) with univariate analyses. With random forest classification, we established EEG-based predictive models. We used receiver operating characteristics to estimate additional values of dynamic connectivity measures for outcome prediction. Of 683 patients, 369 (54%) had poor outcome. Patients with poor outcome had significantly lower LR and longer LD, with largest differences 12 h after cardiac arrest (LRθ 1.87 vs. 1.95 Hz and LDα 91 vs. 82 ms). Adding these measures to a model with classical EEG features increased sensitivity for reliable prediction of poor outcome from 34% to 38% at 12 h after cardiac arrest. Poor outcome is associated with lower dynamics of connectivity after cardiac arrest. Dynamic functional connectivity analysis may improve EEG based outcome prediction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33285379</pmid><doi>10.1016/j.clinph.2020.10.024</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9889-1918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-2457
ispartof Clinical neurophysiology, 2021-01, Vol.132 (1), p.157-164
issn 1388-2457
1872-8952
language eng
recordid cdi_proquest_miscellaneous_2468338568
source Elsevier ScienceDirect Journals
subjects Dynamic functional connectivity
EEG
Outcome
Postanoxic coma
title Dynamic functional connectivity of the EEG in relation to outcome of postanoxic coma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20functional%20connectivity%20of%20the%20EEG%20in%20relation%20to%20outcome%20of%20postanoxic%20coma&rft.jtitle=Clinical%20neurophysiology&rft.au=Keijzer,%20H.M.&rft.date=2021-01&rft.volume=132&rft.issue=1&rft.spage=157&rft.epage=164&rft.pages=157-164&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2020.10.024&rft_dat=%3Cproquest_cross%3E2468338568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468338568&rft_id=info:pmid/33285379&rft_els_id=S1388245720305599&rfr_iscdi=true