Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction
The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound usi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-12, Vol.124 (50), p.10616-10623 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10623 |
---|---|
container_issue | 50 |
container_start_page | 10616 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 124 |
creator | Na, Gyoung S Jang, Seunghun Lee, Yea-Lee Chang, Hyunju |
description | The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound using a machine learning approach with newly developed tuplewise graph neural networks (TGNN), which is devised to automatically generate input representation of crystal structures in tuple types and to exploit crystal-level properties as one of the input features. Our method brings about a highly accurate prediction of the band gaps at hybrid functionals and GW approximation levels for multiple material data sets without heavy computational cost. Furthermore, to demonstrate the applicability of our prediction model, we provide a data set of GW band gaps for 45835 materials predicted by TGNN posing higher accuracy than standard density functional theory calculations. |
doi_str_mv | 10.1021/acs.jpca.0c07802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467847153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467847153</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-47c63f33f517b7d25b1aa6dca315e5e148a600850cd230e098084585f504b3503</originalsourceid><addsrcrecordid>eNp1kMFLwzAYR4MoTqd3T5KjBzu_JE2bHufQKUwUmQdPIU2_akfX1qRF_O_N3PTmKYG894M8Qs4YTBhwdmWsn6w6ayZgIVXA98gRkxwiyZncD3dQWSQTkY3IsfcrAGCCx4dkJARXIFR2RF6XQ1fjZ-WRPpgeXWVq-oydQ49Nb_qqbei18ViEV_teNUgXaFxTNW-0bB2dWju4oAWmKejcdPTJYVHZjXdCDkpTezzdnWPycnuznN1Fi8f5_Wy6iIwQSR_FqU1EKUQpWZqnBZc5MyYprBFMokQWK5MAKAm24AIQMgUqlkqWEuJcSBBjcrHd7Vz7MaDv9bryFuvaNNgOXvM4SVWcMikCClvUutZ7h6XuXLU27ksz0JugOgTVm6B6FzQo57v1IV9j8Sf8FgzA5Rb4UdvBNeGz_-99A6GJgJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467847153</pqid></control><display><type>article</type><title>Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction</title><source>American Chemical Society Journals</source><creator>Na, Gyoung S ; Jang, Seunghun ; Lee, Yea-Lee ; Chang, Hyunju</creator><creatorcontrib>Na, Gyoung S ; Jang, Seunghun ; Lee, Yea-Lee ; Chang, Hyunju</creatorcontrib><description>The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound using a machine learning approach with newly developed tuplewise graph neural networks (TGNN), which is devised to automatically generate input representation of crystal structures in tuple types and to exploit crystal-level properties as one of the input features. Our method brings about a highly accurate prediction of the band gaps at hybrid functionals and GW approximation levels for multiple material data sets without heavy computational cost. Furthermore, to demonstrate the applicability of our prediction model, we provide a data set of GW band gaps for 45835 materials predicted by TGNN posing higher accuracy than standard density functional theory calculations.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c07802</identifier><identifier>PMID: 33280389</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-12, Vol.124 (50), p.10616-10623</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-47c63f33f517b7d25b1aa6dca315e5e148a600850cd230e098084585f504b3503</citedby><cites>FETCH-LOGICAL-a336t-47c63f33f517b7d25b1aa6dca315e5e148a600850cd230e098084585f504b3503</cites><orcidid>0000-0003-2614-1576 ; 0000-0001-7241-5342 ; 0000-0001-8076-5211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c07802$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c07802$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33280389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Na, Gyoung S</creatorcontrib><creatorcontrib>Jang, Seunghun</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Chang, Hyunju</creatorcontrib><title>Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound using a machine learning approach with newly developed tuplewise graph neural networks (TGNN), which is devised to automatically generate input representation of crystal structures in tuple types and to exploit crystal-level properties as one of the input features. Our method brings about a highly accurate prediction of the band gaps at hybrid functionals and GW approximation levels for multiple material data sets without heavy computational cost. Furthermore, to demonstrate the applicability of our prediction model, we provide a data set of GW band gaps for 45835 materials predicted by TGNN posing higher accuracy than standard density functional theory calculations.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAYR4MoTqd3T5KjBzu_JE2bHufQKUwUmQdPIU2_akfX1qRF_O_N3PTmKYG894M8Qs4YTBhwdmWsn6w6ayZgIVXA98gRkxwiyZncD3dQWSQTkY3IsfcrAGCCx4dkJARXIFR2RF6XQ1fjZ-WRPpgeXWVq-oydQ49Nb_qqbei18ViEV_teNUgXaFxTNW-0bB2dWju4oAWmKejcdPTJYVHZjXdCDkpTezzdnWPycnuznN1Fi8f5_Wy6iIwQSR_FqU1EKUQpWZqnBZc5MyYprBFMokQWK5MAKAm24AIQMgUqlkqWEuJcSBBjcrHd7Vz7MaDv9bryFuvaNNgOXvM4SVWcMikCClvUutZ7h6XuXLU27ksz0JugOgTVm6B6FzQo57v1IV9j8Sf8FgzA5Rb4UdvBNeGz_-99A6GJgJs</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Na, Gyoung S</creator><creator>Jang, Seunghun</creator><creator>Lee, Yea-Lee</creator><creator>Chang, Hyunju</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2614-1576</orcidid><orcidid>https://orcid.org/0000-0001-7241-5342</orcidid><orcidid>https://orcid.org/0000-0001-8076-5211</orcidid></search><sort><creationdate>20201217</creationdate><title>Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction</title><author>Na, Gyoung S ; Jang, Seunghun ; Lee, Yea-Lee ; Chang, Hyunju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-47c63f33f517b7d25b1aa6dca315e5e148a600850cd230e098084585f504b3503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Na, Gyoung S</creatorcontrib><creatorcontrib>Jang, Seunghun</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Chang, Hyunju</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Na, Gyoung S</au><au>Jang, Seunghun</au><au>Lee, Yea-Lee</au><au>Chang, Hyunju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>124</volume><issue>50</issue><spage>10616</spage><epage>10623</epage><pages>10616-10623</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound using a machine learning approach with newly developed tuplewise graph neural networks (TGNN), which is devised to automatically generate input representation of crystal structures in tuple types and to exploit crystal-level properties as one of the input features. Our method brings about a highly accurate prediction of the band gaps at hybrid functionals and GW approximation levels for multiple material data sets without heavy computational cost. Furthermore, to demonstrate the applicability of our prediction model, we provide a data set of GW band gaps for 45835 materials predicted by TGNN posing higher accuracy than standard density functional theory calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33280389</pmid><doi>10.1021/acs.jpca.0c07802</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2614-1576</orcidid><orcidid>https://orcid.org/0000-0001-7241-5342</orcidid><orcidid>https://orcid.org/0000-0001-8076-5211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-12, Vol.124 (50), p.10616-10623 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467847153 |
source | American Chemical Society Journals |
subjects | A: New Tools and Methods in Experiment and Theory |
title | Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuplewise%20Material%20Representation%20Based%20Machine%20Learning%20for%20Accurate%20Band%20Gap%20Prediction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Na,%20Gyoung%20S&rft.date=2020-12-17&rft.volume=124&rft.issue=50&rft.spage=10616&rft.epage=10623&rft.pages=10616-10623&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c07802&rft_dat=%3Cproquest_cross%3E2467847153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467847153&rft_id=info:pmid/33280389&rfr_iscdi=true |