Numerical simulation of three-dimensional flow in a cavity
Previous three‐dimensional simulations of the lid‐driven cavity flow have reproduced only the most general features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first completely successful simulation of the three‐dimensional lid‐driven cavity flow. The princ...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 1985-06, Vol.5 (6), p.561-575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 6 |
container_start_page | 561 |
container_title | International journal for numerical methods in fluids |
container_volume | 5 |
creator | Freitas, Christopher J. Street, Robert L. Findikakis, Angelos N. Koseff, Jeffrey R. |
description | Previous three‐dimensional simulations of the lid‐driven cavity flow have reproduced only the most general features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first completely successful simulation of the three‐dimensional lid‐driven cavity flow. The principal improvement to the code was the incorporation of a modified QUICK scheme, a higher‐order upwind finite difference formulation. Results for a cavity flow at a Reynolds number of 3200 have reproduced experimentally observed Taylor‐Görtler‐like vortices and other three‐dimensional effects heretofore not simulated. Experimental results obtained from a unique experimental cavity facility validate the calculated results. |
doi_str_mv | 10.1002/fld.1650050606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24676254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24676254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3666-82c8574e67ecc418060da2060dfcddfa157a8820b42921ccde8e8be49724b82f3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdAbCm246-woUILaikMINgs17GFIR_FTij973HVqoiJ5U66e-_d6QfAKYIDBCG-sGUxQIxCSCGDbA_0EMx5CjOW7YMexBylGOboEByF8A4hzLHIeuBy1lXGO63KJLiqK1XrmjppbNK-eWPSwlWmDnEU97ZslomrE5Vo9eXa1TE4sKoM5mTb--B5dPM0vE2nD-O74dU01RljLBVYC8qJYdxoTZCIzxUKr6vVRWEVolwJgeGc4BwjrQsjjJgbknNM5gLbrA_ON7kL33x2JrSyckGbslS1abogMWGcYUqicLARat-E4I2VC-8q5VcSQblGJCMi-YsoGs62ySpEAtarWruwcwlKM0TyKMs3sqUrzeqfUDmaXv85kW68LrTme-dV_kMynnEqX2ZjObkn9PrxlchJ9gO2PIVv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24676254</pqid></control><display><type>article</type><title>Numerical simulation of three-dimensional flow in a cavity</title><source>Wiley Journals</source><creator>Freitas, Christopher J. ; Street, Robert L. ; Findikakis, Angelos N. ; Koseff, Jeffrey R.</creator><creatorcontrib>Freitas, Christopher J. ; Street, Robert L. ; Findikakis, Angelos N. ; Koseff, Jeffrey R.</creatorcontrib><description>Previous three‐dimensional simulations of the lid‐driven cavity flow have reproduced only the most general features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first completely successful simulation of the three‐dimensional lid‐driven cavity flow. The principal improvement to the code was the incorporation of a modified QUICK scheme, a higher‐order upwind finite difference formulation. Results for a cavity flow at a Reynolds number of 3200 have reproduced experimentally observed Taylor‐Görtler‐like vortices and other three‐dimensional effects heretofore not simulated. Experimental results obtained from a unique experimental cavity facility validate the calculated results.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1650050606</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Sussex: John Wiley & Sons, Ltd</publisher><subject>Cavity Flow ; Control-Volume Formulation ; Convection Scheme ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Incompressible Flow ; Navier-Stokes Equations ; Physics ; QUICK ; Taylor-Görtler Vortices</subject><ispartof>International journal for numerical methods in fluids, 1985-06, Vol.5 (6), p.561-575</ispartof><rights>Copyright © 1985 John Wiley & Sons, Ltd</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3666-82c8574e67ecc418060da2060dfcddfa157a8820b42921ccde8e8be49724b82f3</citedby><cites>FETCH-LOGICAL-c3666-82c8574e67ecc418060da2060dfcddfa157a8820b42921ccde8e8be49724b82f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1650050606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1650050606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8553149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Freitas, Christopher J.</creatorcontrib><creatorcontrib>Street, Robert L.</creatorcontrib><creatorcontrib>Findikakis, Angelos N.</creatorcontrib><creatorcontrib>Koseff, Jeffrey R.</creatorcontrib><title>Numerical simulation of three-dimensional flow in a cavity</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Previous three‐dimensional simulations of the lid‐driven cavity flow have reproduced only the most general features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first completely successful simulation of the three‐dimensional lid‐driven cavity flow. The principal improvement to the code was the incorporation of a modified QUICK scheme, a higher‐order upwind finite difference formulation. Results for a cavity flow at a Reynolds number of 3200 have reproduced experimentally observed Taylor‐Görtler‐like vortices and other three‐dimensional effects heretofore not simulated. Experimental results obtained from a unique experimental cavity facility validate the calculated results.</description><subject>Cavity Flow</subject><subject>Control-Volume Formulation</subject><subject>Convection Scheme</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Incompressible Flow</subject><subject>Navier-Stokes Equations</subject><subject>Physics</subject><subject>QUICK</subject><subject>Taylor-Görtler Vortices</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdAbCm246-woUILaikMINgs17GFIR_FTij973HVqoiJ5U66e-_d6QfAKYIDBCG-sGUxQIxCSCGDbA_0EMx5CjOW7YMexBylGOboEByF8A4hzLHIeuBy1lXGO63KJLiqK1XrmjppbNK-eWPSwlWmDnEU97ZslomrE5Vo9eXa1TE4sKoM5mTb--B5dPM0vE2nD-O74dU01RljLBVYC8qJYdxoTZCIzxUKr6vVRWEVolwJgeGc4BwjrQsjjJgbknNM5gLbrA_ON7kL33x2JrSyckGbslS1abogMWGcYUqicLARat-E4I2VC-8q5VcSQblGJCMi-YsoGs62ySpEAtarWruwcwlKM0TyKMs3sqUrzeqfUDmaXv85kW68LrTme-dV_kMynnEqX2ZjObkn9PrxlchJ9gO2PIVv</recordid><startdate>198506</startdate><enddate>198506</enddate><creator>Freitas, Christopher J.</creator><creator>Street, Robert L.</creator><creator>Findikakis, Angelos N.</creator><creator>Koseff, Jeffrey R.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198506</creationdate><title>Numerical simulation of three-dimensional flow in a cavity</title><author>Freitas, Christopher J. ; Street, Robert L. ; Findikakis, Angelos N. ; Koseff, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3666-82c8574e67ecc418060da2060dfcddfa157a8820b42921ccde8e8be49724b82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Cavity Flow</topic><topic>Control-Volume Formulation</topic><topic>Convection Scheme</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Incompressible Flow</topic><topic>Navier-Stokes Equations</topic><topic>Physics</topic><topic>QUICK</topic><topic>Taylor-Görtler Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitas, Christopher J.</creatorcontrib><creatorcontrib>Street, Robert L.</creatorcontrib><creatorcontrib>Findikakis, Angelos N.</creatorcontrib><creatorcontrib>Koseff, Jeffrey R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitas, Christopher J.</au><au>Street, Robert L.</au><au>Findikakis, Angelos N.</au><au>Koseff, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of three-dimensional flow in a cavity</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>1985-06</date><risdate>1985</risdate><volume>5</volume><issue>6</issue><spage>561</spage><epage>575</epage><pages>561-575</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Previous three‐dimensional simulations of the lid‐driven cavity flow have reproduced only the most general features of the flow. Improvements to a finite difference code, REBUFFS, have made possible the first completely successful simulation of the three‐dimensional lid‐driven cavity flow. The principal improvement to the code was the incorporation of a modified QUICK scheme, a higher‐order upwind finite difference formulation. Results for a cavity flow at a Reynolds number of 3200 have reproduced experimentally observed Taylor‐Görtler‐like vortices and other three‐dimensional effects heretofore not simulated. Experimental results obtained from a unique experimental cavity facility validate the calculated results.</abstract><cop>Sussex</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.1650050606</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 1985-06, Vol.5 (6), p.561-575 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_24676254 |
source | Wiley Journals |
subjects | Cavity Flow Control-Volume Formulation Convection Scheme Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic waves Incompressible Flow Navier-Stokes Equations Physics QUICK Taylor-Görtler Vortices |
title | Numerical simulation of three-dimensional flow in a cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20three-dimensional%20flow%20in%20a%20cavity&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Freitas,%20Christopher%20J.&rft.date=1985-06&rft.volume=5&rft.issue=6&rft.spage=561&rft.epage=575&rft.pages=561-575&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1650050606&rft_dat=%3Cproquest_cross%3E24676254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24676254&rft_id=info:pmid/&rfr_iscdi=true |