GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices
Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2021-03, Vol.32 (13), p.130001-130001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130001 |
---|---|
container_issue | 13 |
container_start_page | 130001 |
container_title | Nanotechnology |
container_volume | 32 |
creator | Chellu, Abhiroop Koivusalo, Eero Raappana, Marianna Ranta, Sanna Polojärvi, Ville Tukiainen, Antti Lahtonen, Kimmo Saari, Jesse Valden, Mika Seppänen, Heli Lipsanen, Harri Guina, Mircea Hakkarainen, Teemu |
description | Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlOx and use of AlNx deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlOx process and more significantly by the AlNx method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlNx passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlNx passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface. |
doi_str_mv | 10.1088/1361-6528/abd0b4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467618948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467618948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3d6c81ffccda3b656c093cf7485251eb76dd5bcf5bbf499bef50ea1c120d10d03</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhhdRbK3ePckeFYzdr2w2x1K0Fipe9LzsJ6Y02TSbFPz3JqZ6EmFgYHjmhXkGgGuMHjASYo4pxwlPiZgrbZFmJ2D6OzoFU5SnWcKYYBNwEeMWIYwFwedgQinJOGX5FLys1CLC2DVeGQdrFWNxUG0RKuhDA9fVIs6_iX2nqrYroQ0t1Co6CytVhfojtKEqDLTuUBgXL8GZV7voro59Bt6fHt-Wz8nmdbVeLjaJYZi0CbXcCOy9MVZRzVNuUE6Nz5hISYqdzri1qTY-1dqzPNfOp8gpbDBBFiOL6Azcjrl1E_adi60si2jcbqcqF7ooCeMZxyJnokfRiJomxNg4L-umKFXzKTGSg0Q5GJODMTlK7FdujumdLp39Xfix1gP3I1CEWm5D11T9sf_l3f2BD_4kJT3eF-p_I2vr6RdGPonk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467618948</pqid></control><display><type>article</type><title>GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chellu, Abhiroop ; Koivusalo, Eero ; Raappana, Marianna ; Ranta, Sanna ; Polojärvi, Ville ; Tukiainen, Antti ; Lahtonen, Kimmo ; Saari, Jesse ; Valden, Mika ; Seppänen, Heli ; Lipsanen, Harri ; Guina, Mircea ; Hakkarainen, Teemu</creator><creatorcontrib>Chellu, Abhiroop ; Koivusalo, Eero ; Raappana, Marianna ; Ranta, Sanna ; Polojärvi, Ville ; Tukiainen, Antti ; Lahtonen, Kimmo ; Saari, Jesse ; Valden, Mika ; Seppänen, Heli ; Lipsanen, Harri ; Guina, Mircea ; Hakkarainen, Teemu</creatorcontrib><description>Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlOx and use of AlNx deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlOx process and more significantly by the AlNx method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlNx passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlNx passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abd0b4</identifier><identifier>PMID: 33276349</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>GaAs ; photoluminescence ; quantum dots ; quantum-confined stark effect ; spectral diffusion ; surface passivation ; surface states</subject><ispartof>Nanotechnology, 2021-03, Vol.32 (13), p.130001-130001</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3d6c81ffccda3b656c093cf7485251eb76dd5bcf5bbf499bef50ea1c120d10d03</citedby><cites>FETCH-LOGICAL-c412t-3d6c81ffccda3b656c093cf7485251eb76dd5bcf5bbf499bef50ea1c120d10d03</cites><orcidid>0000-0002-9317-8187 ; 0000-0001-9490-0672 ; 0000-0002-8138-7918 ; 0000-0003-1034-5523 ; 0000-0001-5768-8270 ; 0000-0001-6741-0838 ; 0000-0001-6758-2496 ; 0000-0002-9693-9818 ; 0000-0003-2487-4645 ; 0000-0001-5965-4234 ; 0000-0002-5402-0758 ; 0000-0001-5029-4658 ; 0000-0003-2227-833X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abd0b4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33276349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chellu, Abhiroop</creatorcontrib><creatorcontrib>Koivusalo, Eero</creatorcontrib><creatorcontrib>Raappana, Marianna</creatorcontrib><creatorcontrib>Ranta, Sanna</creatorcontrib><creatorcontrib>Polojärvi, Ville</creatorcontrib><creatorcontrib>Tukiainen, Antti</creatorcontrib><creatorcontrib>Lahtonen, Kimmo</creatorcontrib><creatorcontrib>Saari, Jesse</creatorcontrib><creatorcontrib>Valden, Mika</creatorcontrib><creatorcontrib>Seppänen, Heli</creatorcontrib><creatorcontrib>Lipsanen, Harri</creatorcontrib><creatorcontrib>Guina, Mircea</creatorcontrib><creatorcontrib>Hakkarainen, Teemu</creatorcontrib><title>GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlOx and use of AlNx deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlOx process and more significantly by the AlNx method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlNx passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlNx passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.</description><subject>GaAs</subject><subject>photoluminescence</subject><subject>quantum dots</subject><subject>quantum-confined stark effect</subject><subject>spectral diffusion</subject><subject>surface passivation</subject><subject>surface states</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhhdRbK3ePckeFYzdr2w2x1K0Fipe9LzsJ6Y02TSbFPz3JqZ6EmFgYHjmhXkGgGuMHjASYo4pxwlPiZgrbZFmJ2D6OzoFU5SnWcKYYBNwEeMWIYwFwedgQinJOGX5FLys1CLC2DVeGQdrFWNxUG0RKuhDA9fVIs6_iX2nqrYroQ0t1Co6CytVhfojtKEqDLTuUBgXL8GZV7voro59Bt6fHt-Wz8nmdbVeLjaJYZi0CbXcCOy9MVZRzVNuUE6Nz5hISYqdzri1qTY-1dqzPNfOp8gpbDBBFiOL6Azcjrl1E_adi60si2jcbqcqF7ooCeMZxyJnokfRiJomxNg4L-umKFXzKTGSg0Q5GJODMTlK7FdujumdLp39Xfix1gP3I1CEWm5D11T9sf_l3f2BD_4kJT3eF-p_I2vr6RdGPonk</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Chellu, Abhiroop</creator><creator>Koivusalo, Eero</creator><creator>Raappana, Marianna</creator><creator>Ranta, Sanna</creator><creator>Polojärvi, Ville</creator><creator>Tukiainen, Antti</creator><creator>Lahtonen, Kimmo</creator><creator>Saari, Jesse</creator><creator>Valden, Mika</creator><creator>Seppänen, Heli</creator><creator>Lipsanen, Harri</creator><creator>Guina, Mircea</creator><creator>Hakkarainen, Teemu</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9317-8187</orcidid><orcidid>https://orcid.org/0000-0001-9490-0672</orcidid><orcidid>https://orcid.org/0000-0002-8138-7918</orcidid><orcidid>https://orcid.org/0000-0003-1034-5523</orcidid><orcidid>https://orcid.org/0000-0001-5768-8270</orcidid><orcidid>https://orcid.org/0000-0001-6741-0838</orcidid><orcidid>https://orcid.org/0000-0001-6758-2496</orcidid><orcidid>https://orcid.org/0000-0002-9693-9818</orcidid><orcidid>https://orcid.org/0000-0003-2487-4645</orcidid><orcidid>https://orcid.org/0000-0001-5965-4234</orcidid><orcidid>https://orcid.org/0000-0002-5402-0758</orcidid><orcidid>https://orcid.org/0000-0001-5029-4658</orcidid><orcidid>https://orcid.org/0000-0003-2227-833X</orcidid></search><sort><creationdate>20210326</creationdate><title>GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices</title><author>Chellu, Abhiroop ; Koivusalo, Eero ; Raappana, Marianna ; Ranta, Sanna ; Polojärvi, Ville ; Tukiainen, Antti ; Lahtonen, Kimmo ; Saari, Jesse ; Valden, Mika ; Seppänen, Heli ; Lipsanen, Harri ; Guina, Mircea ; Hakkarainen, Teemu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3d6c81ffccda3b656c093cf7485251eb76dd5bcf5bbf499bef50ea1c120d10d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>GaAs</topic><topic>photoluminescence</topic><topic>quantum dots</topic><topic>quantum-confined stark effect</topic><topic>spectral diffusion</topic><topic>surface passivation</topic><topic>surface states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chellu, Abhiroop</creatorcontrib><creatorcontrib>Koivusalo, Eero</creatorcontrib><creatorcontrib>Raappana, Marianna</creatorcontrib><creatorcontrib>Ranta, Sanna</creatorcontrib><creatorcontrib>Polojärvi, Ville</creatorcontrib><creatorcontrib>Tukiainen, Antti</creatorcontrib><creatorcontrib>Lahtonen, Kimmo</creatorcontrib><creatorcontrib>Saari, Jesse</creatorcontrib><creatorcontrib>Valden, Mika</creatorcontrib><creatorcontrib>Seppänen, Heli</creatorcontrib><creatorcontrib>Lipsanen, Harri</creatorcontrib><creatorcontrib>Guina, Mircea</creatorcontrib><creatorcontrib>Hakkarainen, Teemu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chellu, Abhiroop</au><au>Koivusalo, Eero</au><au>Raappana, Marianna</au><au>Ranta, Sanna</au><au>Polojärvi, Ville</au><au>Tukiainen, Antti</au><au>Lahtonen, Kimmo</au><au>Saari, Jesse</au><au>Valden, Mika</au><au>Seppänen, Heli</au><au>Lipsanen, Harri</au><au>Guina, Mircea</au><au>Hakkarainen, Teemu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-03-26</date><risdate>2021</risdate><volume>32</volume><issue>13</issue><spage>130001</spage><epage>130001</epage><pages>130001-130001</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlOx and use of AlNx deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlOx process and more significantly by the AlNx method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlNx passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlNx passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33276349</pmid><doi>10.1088/1361-6528/abd0b4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9317-8187</orcidid><orcidid>https://orcid.org/0000-0001-9490-0672</orcidid><orcidid>https://orcid.org/0000-0002-8138-7918</orcidid><orcidid>https://orcid.org/0000-0003-1034-5523</orcidid><orcidid>https://orcid.org/0000-0001-5768-8270</orcidid><orcidid>https://orcid.org/0000-0001-6741-0838</orcidid><orcidid>https://orcid.org/0000-0001-6758-2496</orcidid><orcidid>https://orcid.org/0000-0002-9693-9818</orcidid><orcidid>https://orcid.org/0000-0003-2487-4645</orcidid><orcidid>https://orcid.org/0000-0001-5965-4234</orcidid><orcidid>https://orcid.org/0000-0002-5402-0758</orcidid><orcidid>https://orcid.org/0000-0001-5029-4658</orcidid><orcidid>https://orcid.org/0000-0003-2227-833X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2021-03, Vol.32 (13), p.130001-130001 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467618948 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | GaAs photoluminescence quantum dots quantum-confined stark effect spectral diffusion surface passivation surface states |
title | GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaAs%20surface%20passivation%20for%20InAs/GaAs%20quantum%20dot%20based%20nanophotonic%20devices&rft.jtitle=Nanotechnology&rft.au=Chellu,%20Abhiroop&rft.date=2021-03-26&rft.volume=32&rft.issue=13&rft.spage=130001&rft.epage=130001&rft.pages=130001-130001&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abd0b4&rft_dat=%3Cproquest_cross%3E2467618948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467618948&rft_id=info:pmid/33276349&rfr_iscdi=true |