RIPK1 Promotes Energy Sensing by the mTORC1 Pathway

The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-01, Vol.81 (2), p.370-385.e7
Hauptverfasser: Najafov, Ayaz, Luu, Hoang Son, Mookhtiar, Adnan K., Mifflin, Lauren, Xia, Hong-guang, Amin, Palak P., Ordureau, Alban, Wang, Huibing, Yuan, Junying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385.e7
container_issue 2
container_start_page 370
container_title Molecular cell
container_volume 81
creator Najafov, Ayaz
Luu, Hoang Son
Mookhtiar, Adnan K.
Mifflin, Lauren
Xia, Hong-guang
Amin, Palak P.
Ordureau, Alban
Wang, Huibing
Yuan, Junying
description The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways. [Display omitted] •RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.
doi_str_mv 10.1016/j.molcel.2020.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467617388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520307863</els_id><sourcerecordid>2467617388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gUgffWlNmjRNXgQZU4eDjTmfQ9Jct461nUmn9Nvb0emjT3ccv7vj_0PoluCIYMIftlFZ7zLYRTGOuxGJMBZnaEiwTENGODs_9XHKkwG68n6LMWGJkJdoQGmcEszjIaLL6eKNBAtXl3UDPphU4NZt8A6VL6p1YNqg2UBQrubLcUfpZvOt22t0keudh5tTHaGP58lq_BrO5i_T8dMszFjKmjCVUjAhpMksNzxjuaWCCgkJAJWJsZoaAyTWglPKMLeG0FwbYzhnklrQdITu-7t7V38ewDeqLHyXeKcrqA9exYynnKRUiA5lPZq52nsHudq7otSuVQSroy61Vb0uddSlCFGdrm7t7vThYEqwf0u_fjrgsQegy_lVgFM-K6DKwBYOskbZuvj_ww93vHth</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467617388</pqid></control><display><type>article</type><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</creator><creatorcontrib>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</creatorcontrib><description>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways. [Display omitted] •RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.11.008</identifier><identifier>PMID: 33271062</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Animals ; Animals, Newborn ; Autophagy-Related Protein 5 - deficiency ; Autophagy-Related Protein 5 - genetics ; CASP8 ; Caspase 8 - genetics ; Caspase 8 - metabolism ; Cell Death - genetics ; Fas-Associated Death Domain Protein - deficiency ; Fas-Associated Death Domain Protein - genetics ; Gene Expression Regulation ; Glucose - antagonists &amp; inhibitors ; Glucose - pharmacology ; HEK293 Cells ; HT29 Cells ; Humans ; Intestine, Large - drug effects ; Intestine, Large - metabolism ; Intestine, Large - pathology ; Jurkat Cells ; lysosome ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - pathology ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Metformin - antagonists &amp; inhibitors ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; MLKL ; mTORC1 ; neonatal lethality ; Phosphorylation ; Receptor-Interacting Protein Serine-Threonine Kinases - deficiency ; Receptor-Interacting Protein Serine-Threonine Kinases - genetics ; RIPK1 ; RIPK3 ; Signal Transduction ; Sirolimus - pharmacology ; TSC2 ; Tuberous Sclerosis Complex 2 Protein - genetics ; Tuberous Sclerosis Complex 2 Protein - metabolism</subject><ispartof>Molecular cell, 2021-01, Vol.81 (2), p.370-385.e7</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</citedby><cites>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</cites><orcidid>0000-0001-6980-577X ; 0000-0003-1607-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33271062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najafov, Ayaz</creatorcontrib><creatorcontrib>Luu, Hoang Son</creatorcontrib><creatorcontrib>Mookhtiar, Adnan K.</creatorcontrib><creatorcontrib>Mifflin, Lauren</creatorcontrib><creatorcontrib>Xia, Hong-guang</creatorcontrib><creatorcontrib>Amin, Palak P.</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yuan, Junying</creatorcontrib><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways. [Display omitted] •RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</description><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autophagy-Related Protein 5 - deficiency</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>CASP8</subject><subject>Caspase 8 - genetics</subject><subject>Caspase 8 - metabolism</subject><subject>Cell Death - genetics</subject><subject>Fas-Associated Death Domain Protein - deficiency</subject><subject>Fas-Associated Death Domain Protein - genetics</subject><subject>Gene Expression Regulation</subject><subject>Glucose - antagonists &amp; inhibitors</subject><subject>Glucose - pharmacology</subject><subject>HEK293 Cells</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>Intestine, Large - drug effects</subject><subject>Intestine, Large - metabolism</subject><subject>Intestine, Large - pathology</subject><subject>Jurkat Cells</subject><subject>lysosome</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - pathology</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Metformin - antagonists &amp; inhibitors</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>MLKL</subject><subject>mTORC1</subject><subject>neonatal lethality</subject><subject>Phosphorylation</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - deficiency</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</subject><subject>RIPK1</subject><subject>RIPK3</subject><subject>Signal Transduction</subject><subject>Sirolimus - pharmacology</subject><subject>TSC2</subject><subject>Tuberous Sclerosis Complex 2 Protein - genetics</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gUgffWlNmjRNXgQZU4eDjTmfQ9Jct461nUmn9Nvb0emjT3ccv7vj_0PoluCIYMIftlFZ7zLYRTGOuxGJMBZnaEiwTENGODs_9XHKkwG68n6LMWGJkJdoQGmcEszjIaLL6eKNBAtXl3UDPphU4NZt8A6VL6p1YNqg2UBQrubLcUfpZvOt22t0keudh5tTHaGP58lq_BrO5i_T8dMszFjKmjCVUjAhpMksNzxjuaWCCgkJAJWJsZoaAyTWglPKMLeG0FwbYzhnklrQdITu-7t7V38ewDeqLHyXeKcrqA9exYynnKRUiA5lPZq52nsHudq7otSuVQSroy61Vb0uddSlCFGdrm7t7vThYEqwf0u_fjrgsQegy_lVgFM-K6DKwBYOskbZuvj_ww93vHth</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Najafov, Ayaz</creator><creator>Luu, Hoang Son</creator><creator>Mookhtiar, Adnan K.</creator><creator>Mifflin, Lauren</creator><creator>Xia, Hong-guang</creator><creator>Amin, Palak P.</creator><creator>Ordureau, Alban</creator><creator>Wang, Huibing</creator><creator>Yuan, Junying</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6980-577X</orcidid><orcidid>https://orcid.org/0000-0003-1607-5851</orcidid></search><sort><creationdate>20210121</creationdate><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><author>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autophagy-Related Protein 5 - deficiency</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>CASP8</topic><topic>Caspase 8 - genetics</topic><topic>Caspase 8 - metabolism</topic><topic>Cell Death - genetics</topic><topic>Fas-Associated Death Domain Protein - deficiency</topic><topic>Fas-Associated Death Domain Protein - genetics</topic><topic>Gene Expression Regulation</topic><topic>Glucose - antagonists &amp; inhibitors</topic><topic>Glucose - pharmacology</topic><topic>HEK293 Cells</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>Intestine, Large - drug effects</topic><topic>Intestine, Large - metabolism</topic><topic>Intestine, Large - pathology</topic><topic>Jurkat Cells</topic><topic>lysosome</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - pathology</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Metformin - antagonists &amp; inhibitors</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>MLKL</topic><topic>mTORC1</topic><topic>neonatal lethality</topic><topic>Phosphorylation</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - deficiency</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</topic><topic>RIPK1</topic><topic>RIPK3</topic><topic>Signal Transduction</topic><topic>Sirolimus - pharmacology</topic><topic>TSC2</topic><topic>Tuberous Sclerosis Complex 2 Protein - genetics</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafov, Ayaz</creatorcontrib><creatorcontrib>Luu, Hoang Son</creatorcontrib><creatorcontrib>Mookhtiar, Adnan K.</creatorcontrib><creatorcontrib>Mifflin, Lauren</creatorcontrib><creatorcontrib>Xia, Hong-guang</creatorcontrib><creatorcontrib>Amin, Palak P.</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yuan, Junying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafov, Ayaz</au><au>Luu, Hoang Son</au><au>Mookhtiar, Adnan K.</au><au>Mifflin, Lauren</au><au>Xia, Hong-guang</au><au>Amin, Palak P.</au><au>Ordureau, Alban</au><au>Wang, Huibing</au><au>Yuan, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>81</volume><issue>2</issue><spage>370</spage><epage>385.e7</epage><pages>370-385.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways. [Display omitted] •RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33271062</pmid><doi>10.1016/j.molcel.2020.11.008</doi><orcidid>https://orcid.org/0000-0001-6980-577X</orcidid><orcidid>https://orcid.org/0000-0003-1607-5851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-01, Vol.81 (2), p.370-385.e7
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_2467617388
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry
subjects AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
AMPK
Animals
Animals, Newborn
Autophagy-Related Protein 5 - deficiency
Autophagy-Related Protein 5 - genetics
CASP8
Caspase 8 - genetics
Caspase 8 - metabolism
Cell Death - genetics
Fas-Associated Death Domain Protein - deficiency
Fas-Associated Death Domain Protein - genetics
Gene Expression Regulation
Glucose - antagonists & inhibitors
Glucose - pharmacology
HEK293 Cells
HT29 Cells
Humans
Intestine, Large - drug effects
Intestine, Large - metabolism
Intestine, Large - pathology
Jurkat Cells
lysosome
Lysosomes - drug effects
Lysosomes - metabolism
Lysosomes - pathology
Mechanistic Target of Rapamycin Complex 1 - genetics
Mechanistic Target of Rapamycin Complex 1 - metabolism
Metformin - antagonists & inhibitors
Metformin - pharmacology
Mice
Mice, Inbred C57BL
Mice, Knockout
MLKL
mTORC1
neonatal lethality
Phosphorylation
Receptor-Interacting Protein Serine-Threonine Kinases - deficiency
Receptor-Interacting Protein Serine-Threonine Kinases - genetics
RIPK1
RIPK3
Signal Transduction
Sirolimus - pharmacology
TSC2
Tuberous Sclerosis Complex 2 Protein - genetics
Tuberous Sclerosis Complex 2 Protein - metabolism
title RIPK1 Promotes Energy Sensing by the mTORC1 Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RIPK1%20Promotes%20Energy%20Sensing%20by%20the%20mTORC1%20Pathway&rft.jtitle=Molecular%20cell&rft.au=Najafov,%20Ayaz&rft.date=2021-01-21&rft.volume=81&rft.issue=2&rft.spage=370&rft.epage=385.e7&rft.pages=370-385.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.11.008&rft_dat=%3Cproquest_cross%3E2467617388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467617388&rft_id=info:pmid/33271062&rft_els_id=S1097276520307863&rfr_iscdi=true