RIPK1 Promotes Energy Sensing by the mTORC1 Pathway
The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-01, Vol.81 (2), p.370-385.e7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385.e7 |
---|---|
container_issue | 2 |
container_start_page | 370 |
container_title | Molecular cell |
container_volume | 81 |
creator | Najafov, Ayaz Luu, Hoang Son Mookhtiar, Adnan K. Mifflin, Lauren Xia, Hong-guang Amin, Palak P. Ordureau, Alban Wang, Huibing Yuan, Junying |
description | The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
[Display omitted]
•RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice
RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction. |
doi_str_mv | 10.1016/j.molcel.2020.11.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467617388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520307863</els_id><sourcerecordid>2467617388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gUgffWlNmjRNXgQZU4eDjTmfQ9Jct461nUmn9Nvb0emjT3ccv7vj_0PoluCIYMIftlFZ7zLYRTGOuxGJMBZnaEiwTENGODs_9XHKkwG68n6LMWGJkJdoQGmcEszjIaLL6eKNBAtXl3UDPphU4NZt8A6VL6p1YNqg2UBQrubLcUfpZvOt22t0keudh5tTHaGP58lq_BrO5i_T8dMszFjKmjCVUjAhpMksNzxjuaWCCgkJAJWJsZoaAyTWglPKMLeG0FwbYzhnklrQdITu-7t7V38ewDeqLHyXeKcrqA9exYynnKRUiA5lPZq52nsHudq7otSuVQSroy61Vb0uddSlCFGdrm7t7vThYEqwf0u_fjrgsQegy_lVgFM-K6DKwBYOskbZuvj_ww93vHth</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467617388</pqid></control><display><type>article</type><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</creator><creatorcontrib>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</creatorcontrib><description>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
[Display omitted]
•RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice
RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.11.008</identifier><identifier>PMID: 33271062</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Animals ; Animals, Newborn ; Autophagy-Related Protein 5 - deficiency ; Autophagy-Related Protein 5 - genetics ; CASP8 ; Caspase 8 - genetics ; Caspase 8 - metabolism ; Cell Death - genetics ; Fas-Associated Death Domain Protein - deficiency ; Fas-Associated Death Domain Protein - genetics ; Gene Expression Regulation ; Glucose - antagonists & inhibitors ; Glucose - pharmacology ; HEK293 Cells ; HT29 Cells ; Humans ; Intestine, Large - drug effects ; Intestine, Large - metabolism ; Intestine, Large - pathology ; Jurkat Cells ; lysosome ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - pathology ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Metformin - antagonists & inhibitors ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; MLKL ; mTORC1 ; neonatal lethality ; Phosphorylation ; Receptor-Interacting Protein Serine-Threonine Kinases - deficiency ; Receptor-Interacting Protein Serine-Threonine Kinases - genetics ; RIPK1 ; RIPK3 ; Signal Transduction ; Sirolimus - pharmacology ; TSC2 ; Tuberous Sclerosis Complex 2 Protein - genetics ; Tuberous Sclerosis Complex 2 Protein - metabolism</subject><ispartof>Molecular cell, 2021-01, Vol.81 (2), p.370-385.e7</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</citedby><cites>FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</cites><orcidid>0000-0001-6980-577X ; 0000-0003-1607-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33271062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najafov, Ayaz</creatorcontrib><creatorcontrib>Luu, Hoang Son</creatorcontrib><creatorcontrib>Mookhtiar, Adnan K.</creatorcontrib><creatorcontrib>Mifflin, Lauren</creatorcontrib><creatorcontrib>Xia, Hong-guang</creatorcontrib><creatorcontrib>Amin, Palak P.</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yuan, Junying</creatorcontrib><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
[Display omitted]
•RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice
RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</description><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autophagy-Related Protein 5 - deficiency</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>CASP8</subject><subject>Caspase 8 - genetics</subject><subject>Caspase 8 - metabolism</subject><subject>Cell Death - genetics</subject><subject>Fas-Associated Death Domain Protein - deficiency</subject><subject>Fas-Associated Death Domain Protein - genetics</subject><subject>Gene Expression Regulation</subject><subject>Glucose - antagonists & inhibitors</subject><subject>Glucose - pharmacology</subject><subject>HEK293 Cells</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>Intestine, Large - drug effects</subject><subject>Intestine, Large - metabolism</subject><subject>Intestine, Large - pathology</subject><subject>Jurkat Cells</subject><subject>lysosome</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - pathology</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Metformin - antagonists & inhibitors</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>MLKL</subject><subject>mTORC1</subject><subject>neonatal lethality</subject><subject>Phosphorylation</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - deficiency</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</subject><subject>RIPK1</subject><subject>RIPK3</subject><subject>Signal Transduction</subject><subject>Sirolimus - pharmacology</subject><subject>TSC2</subject><subject>Tuberous Sclerosis Complex 2 Protein - genetics</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gUgffWlNmjRNXgQZU4eDjTmfQ9Jct461nUmn9Nvb0emjT3ccv7vj_0PoluCIYMIftlFZ7zLYRTGOuxGJMBZnaEiwTENGODs_9XHKkwG68n6LMWGJkJdoQGmcEszjIaLL6eKNBAtXl3UDPphU4NZt8A6VL6p1YNqg2UBQrubLcUfpZvOt22t0keudh5tTHaGP58lq_BrO5i_T8dMszFjKmjCVUjAhpMksNzxjuaWCCgkJAJWJsZoaAyTWglPKMLeG0FwbYzhnklrQdITu-7t7V38ewDeqLHyXeKcrqA9exYynnKRUiA5lPZq52nsHudq7otSuVQSroy61Vb0uddSlCFGdrm7t7vThYEqwf0u_fjrgsQegy_lVgFM-K6DKwBYOskbZuvj_ww93vHth</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Najafov, Ayaz</creator><creator>Luu, Hoang Son</creator><creator>Mookhtiar, Adnan K.</creator><creator>Mifflin, Lauren</creator><creator>Xia, Hong-guang</creator><creator>Amin, Palak P.</creator><creator>Ordureau, Alban</creator><creator>Wang, Huibing</creator><creator>Yuan, Junying</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6980-577X</orcidid><orcidid>https://orcid.org/0000-0003-1607-5851</orcidid></search><sort><creationdate>20210121</creationdate><title>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</title><author>Najafov, Ayaz ; Luu, Hoang Son ; Mookhtiar, Adnan K. ; Mifflin, Lauren ; Xia, Hong-guang ; Amin, Palak P. ; Ordureau, Alban ; Wang, Huibing ; Yuan, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-79984889bcd6b6c4fd38389e5ee395bda3bbe12a8633406db13fabbb66493dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autophagy-Related Protein 5 - deficiency</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>CASP8</topic><topic>Caspase 8 - genetics</topic><topic>Caspase 8 - metabolism</topic><topic>Cell Death - genetics</topic><topic>Fas-Associated Death Domain Protein - deficiency</topic><topic>Fas-Associated Death Domain Protein - genetics</topic><topic>Gene Expression Regulation</topic><topic>Glucose - antagonists & inhibitors</topic><topic>Glucose - pharmacology</topic><topic>HEK293 Cells</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>Intestine, Large - drug effects</topic><topic>Intestine, Large - metabolism</topic><topic>Intestine, Large - pathology</topic><topic>Jurkat Cells</topic><topic>lysosome</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - pathology</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Metformin - antagonists & inhibitors</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>MLKL</topic><topic>mTORC1</topic><topic>neonatal lethality</topic><topic>Phosphorylation</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - deficiency</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</topic><topic>RIPK1</topic><topic>RIPK3</topic><topic>Signal Transduction</topic><topic>Sirolimus - pharmacology</topic><topic>TSC2</topic><topic>Tuberous Sclerosis Complex 2 Protein - genetics</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafov, Ayaz</creatorcontrib><creatorcontrib>Luu, Hoang Son</creatorcontrib><creatorcontrib>Mookhtiar, Adnan K.</creatorcontrib><creatorcontrib>Mifflin, Lauren</creatorcontrib><creatorcontrib>Xia, Hong-guang</creatorcontrib><creatorcontrib>Amin, Palak P.</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Wang, Huibing</creatorcontrib><creatorcontrib>Yuan, Junying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafov, Ayaz</au><au>Luu, Hoang Son</au><au>Mookhtiar, Adnan K.</au><au>Mifflin, Lauren</au><au>Xia, Hong-guang</au><au>Amin, Palak P.</au><au>Ordureau, Alban</au><au>Wang, Huibing</au><au>Yuan, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RIPK1 Promotes Energy Sensing by the mTORC1 Pathway</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>81</volume><issue>2</issue><spage>370</spage><epage>385.e7</epage><pages>370-385.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.
[Display omitted]
•RIPK1 loss results in elevated mTORC1 activity, causing lysosomal dysfunction•RIPK1 regulates mTORC1 inhibition by AMPK•RIPK1 acts as a scaffold to promote TSC2 phosphorylation by AMPK at Ser1387•mTORC1 inhibitor rapamycin prolongs survival of RIPK1 knockout newborn mice
RIPK1 scaffold activity is known to have a pro-survival role in TNFα signaling. Najafov et al. discover an unexpected role for RIPK1 scaffold activity in mediating mTORC1 inhibition by AMPK during energetic stress. Mechanistic studies reveal that RIPK1 is involved in regulating TSC2 phosphorylation at Ser1387 by AMPK. Reduced phosphorylation of this site in RIPK1-deficient cells results in a chronically elevated mTORC1 activity and lysosomal dysfunction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33271062</pmid><doi>10.1016/j.molcel.2020.11.008</doi><orcidid>https://orcid.org/0000-0001-6980-577X</orcidid><orcidid>https://orcid.org/0000-0003-1607-5851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-01, Vol.81 (2), p.370-385.e7 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467617388 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry |
subjects | AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism AMPK Animals Animals, Newborn Autophagy-Related Protein 5 - deficiency Autophagy-Related Protein 5 - genetics CASP8 Caspase 8 - genetics Caspase 8 - metabolism Cell Death - genetics Fas-Associated Death Domain Protein - deficiency Fas-Associated Death Domain Protein - genetics Gene Expression Regulation Glucose - antagonists & inhibitors Glucose - pharmacology HEK293 Cells HT29 Cells Humans Intestine, Large - drug effects Intestine, Large - metabolism Intestine, Large - pathology Jurkat Cells lysosome Lysosomes - drug effects Lysosomes - metabolism Lysosomes - pathology Mechanistic Target of Rapamycin Complex 1 - genetics Mechanistic Target of Rapamycin Complex 1 - metabolism Metformin - antagonists & inhibitors Metformin - pharmacology Mice Mice, Inbred C57BL Mice, Knockout MLKL mTORC1 neonatal lethality Phosphorylation Receptor-Interacting Protein Serine-Threonine Kinases - deficiency Receptor-Interacting Protein Serine-Threonine Kinases - genetics RIPK1 RIPK3 Signal Transduction Sirolimus - pharmacology TSC2 Tuberous Sclerosis Complex 2 Protein - genetics Tuberous Sclerosis Complex 2 Protein - metabolism |
title | RIPK1 Promotes Energy Sensing by the mTORC1 Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RIPK1%20Promotes%20Energy%20Sensing%20by%20the%20mTORC1%20Pathway&rft.jtitle=Molecular%20cell&rft.au=Najafov,%20Ayaz&rft.date=2021-01-21&rft.volume=81&rft.issue=2&rft.spage=370&rft.epage=385.e7&rft.pages=370-385.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.11.008&rft_dat=%3Cproquest_cross%3E2467617388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467617388&rft_id=info:pmid/33271062&rft_els_id=S1097276520307863&rfr_iscdi=true |