The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis
Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-02, Vol.121, p.514-526 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | |
container_start_page | 514 |
container_title | Acta biomaterialia |
container_volume | 121 |
creator | Liddell, Robert S. Ajami, Elnaz Li, Yunqing Bajenova, Elena Yang, Yuan Davies, John E. |
description | Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.11.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467616647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120306978</els_id><sourcerecordid>2467616647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS1ERELgHyDUEhcuPfHWXi5IKGKTInFJzpaX6hkP0_Zgu5H49_FoAgcOnFy2vqryew-hNwRvCCbiZr-xvrmYNxTT_kQ2mLNn6IooqUY5CfW815LTUWJBLtHLWvcYM0WoeoEuGaOSsElfIXe_gyGm-bBC8jDkeYjL8WBTGwLUuE1DTkPryI-YoEVfT0SuFXJMDbbFttgBm8LgcoJe-F0udgvDLi-Qa7M11lfoYraHCq-fzmv08PnT_e3X8e77l2-3H-9GzyfRRhBaz45JyyQQL_jE5NzvWjsFMswKByyCcpQ56gkHx23o-pSatWXagmLX6P157rHknyvUZpZYPRy6GshrNZQLKYgQXHb03T_oPq8l9d91SlNGponoTvEz5UuXXGA2xxIXW34bgs0pA7M35wzMKQNDiOkZ9La3T8NXt0D42_TH9A58OAPQ3fgVoZjq48n-EAv4ZkKO_9_wCFcPmmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315519</pqid></control><display><type>article</type><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</creator><creatorcontrib>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</creatorcontrib><description>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.11.043</identifier><identifier>PMID: 33271359</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anchorages ; Asymptotic methods ; Bone (long) ; Bone growth ; Bone implants ; Curve fitting ; Dental Implants ; Design ; Design modifications ; Homeostasis ; Kinetics ; Osseointegration ; Osteogenesis ; Surface Properties ; Surgical implants ; Titanium ; Titanium - pharmacology ; Topography ; Torque ; Transplants & implants</subject><ispartof>Acta biomaterialia, 2021-02, Vol.121, p.514-526</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</citedby><cites>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</cites><orcidid>0000-0002-5659-6275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.11.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33271359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liddell, Robert S.</creatorcontrib><creatorcontrib>Ajami, Elnaz</creatorcontrib><creatorcontrib>Li, Yunqing</creatorcontrib><creatorcontrib>Bajenova, Elena</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Davies, John E.</creatorcontrib><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.
[Display omitted]</description><subject>Anchorages</subject><subject>Asymptotic methods</subject><subject>Bone (long)</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Curve fitting</subject><subject>Dental Implants</subject><subject>Design</subject><subject>Design modifications</subject><subject>Homeostasis</subject><subject>Kinetics</subject><subject>Osseointegration</subject><subject>Osteogenesis</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium - pharmacology</subject><subject>Topography</subject><subject>Torque</subject><subject>Transplants & implants</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlvFDEQhS1ERELgHyDUEhcuPfHWXi5IKGKTInFJzpaX6hkP0_Zgu5H49_FoAgcOnFy2vqryew-hNwRvCCbiZr-xvrmYNxTT_kQ2mLNn6IooqUY5CfW815LTUWJBLtHLWvcYM0WoeoEuGaOSsElfIXe_gyGm-bBC8jDkeYjL8WBTGwLUuE1DTkPryI-YoEVfT0SuFXJMDbbFttgBm8LgcoJe-F0udgvDLi-Qa7M11lfoYraHCq-fzmv08PnT_e3X8e77l2-3H-9GzyfRRhBaz45JyyQQL_jE5NzvWjsFMswKByyCcpQ56gkHx23o-pSatWXagmLX6P157rHknyvUZpZYPRy6GshrNZQLKYgQXHb03T_oPq8l9d91SlNGponoTvEz5UuXXGA2xxIXW34bgs0pA7M35wzMKQNDiOkZ9La3T8NXt0D42_TH9A58OAPQ3fgVoZjq48n-EAv4ZkKO_9_wCFcPmmE</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Liddell, Robert S.</creator><creator>Ajami, Elnaz</creator><creator>Li, Yunqing</creator><creator>Bajenova, Elena</creator><creator>Yang, Yuan</creator><creator>Davies, John E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5659-6275</orcidid></search><sort><creationdate>202102</creationdate><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><author>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anchorages</topic><topic>Asymptotic methods</topic><topic>Bone (long)</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Curve fitting</topic><topic>Dental Implants</topic><topic>Design</topic><topic>Design modifications</topic><topic>Homeostasis</topic><topic>Kinetics</topic><topic>Osseointegration</topic><topic>Osteogenesis</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium - pharmacology</topic><topic>Topography</topic><topic>Torque</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liddell, Robert S.</creatorcontrib><creatorcontrib>Ajami, Elnaz</creatorcontrib><creatorcontrib>Li, Yunqing</creatorcontrib><creatorcontrib>Bajenova, Elena</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Davies, John E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liddell, Robert S.</au><au>Ajami, Elnaz</au><au>Li, Yunqing</au><au>Bajenova, Elena</au><au>Yang, Yuan</au><au>Davies, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>121</volume><spage>514</spage><epage>526</epage><pages>514-526</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33271359</pmid><doi>10.1016/j.actbio.2020.11.043</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5659-6275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-02, Vol.121, p.514-526 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467616647 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Anchorages Asymptotic methods Bone (long) Bone growth Bone implants Curve fitting Dental Implants Design Design modifications Homeostasis Kinetics Osseointegration Osteogenesis Surface Properties Surgical implants Titanium Titanium - pharmacology Topography Torque Transplants & implants |
title | The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20implant%20design%20on%20the%20kinetics%20of%20osseointegration%20and%20bone%20anchorage%20homeostasis&rft.jtitle=Acta%20biomaterialia&rft.au=Liddell,%20Robert%20S.&rft.date=2021-02&rft.volume=121&rft.spage=514&rft.epage=526&rft.pages=514-526&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.11.043&rft_dat=%3Cproquest_cross%3E2467616647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315519&rft_id=info:pmid/33271359&rft_els_id=S1742706120306978&rfr_iscdi=true |