The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis

Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-02, Vol.121, p.514-526
Hauptverfasser: Liddell, Robert S., Ajami, Elnaz, Li, Yunqing, Bajenova, Elena, Yang, Yuan, Davies, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue
container_start_page 514
container_title Acta biomaterialia
container_volume 121
creator Liddell, Robert S.
Ajami, Elnaz
Li, Yunqing
Bajenova, Elena
Yang, Yuan
Davies, John E.
description Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.11.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467616647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120306978</els_id><sourcerecordid>2467616647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</originalsourceid><addsrcrecordid>eNp9kUlvFDEQhS1ERELgHyDUEhcuPfHWXi5IKGKTInFJzpaX6hkP0_Zgu5H49_FoAgcOnFy2vqryew-hNwRvCCbiZr-xvrmYNxTT_kQ2mLNn6IooqUY5CfW815LTUWJBLtHLWvcYM0WoeoEuGaOSsElfIXe_gyGm-bBC8jDkeYjL8WBTGwLUuE1DTkPryI-YoEVfT0SuFXJMDbbFttgBm8LgcoJe-F0udgvDLi-Qa7M11lfoYraHCq-fzmv08PnT_e3X8e77l2-3H-9GzyfRRhBaz45JyyQQL_jE5NzvWjsFMswKByyCcpQ56gkHx23o-pSatWXagmLX6P157rHknyvUZpZYPRy6GshrNZQLKYgQXHb03T_oPq8l9d91SlNGponoTvEz5UuXXGA2xxIXW34bgs0pA7M35wzMKQNDiOkZ9La3T8NXt0D42_TH9A58OAPQ3fgVoZjq48n-EAv4ZkKO_9_wCFcPmmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315519</pqid></control><display><type>article</type><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</creator><creatorcontrib>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</creatorcontrib><description>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.11.043</identifier><identifier>PMID: 33271359</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anchorages ; Asymptotic methods ; Bone (long) ; Bone growth ; Bone implants ; Curve fitting ; Dental Implants ; Design ; Design modifications ; Homeostasis ; Kinetics ; Osseointegration ; Osteogenesis ; Surface Properties ; Surgical implants ; Titanium ; Titanium - pharmacology ; Topography ; Torque ; Transplants &amp; implants</subject><ispartof>Acta biomaterialia, 2021-02, Vol.121, p.514-526</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</citedby><cites>FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</cites><orcidid>0000-0002-5659-6275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.11.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33271359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liddell, Robert S.</creatorcontrib><creatorcontrib>Ajami, Elnaz</creatorcontrib><creatorcontrib>Li, Yunqing</creatorcontrib><creatorcontrib>Bajenova, Elena</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Davies, John E.</creatorcontrib><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design. [Display omitted]</description><subject>Anchorages</subject><subject>Asymptotic methods</subject><subject>Bone (long)</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Curve fitting</subject><subject>Dental Implants</subject><subject>Design</subject><subject>Design modifications</subject><subject>Homeostasis</subject><subject>Kinetics</subject><subject>Osseointegration</subject><subject>Osteogenesis</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium - pharmacology</subject><subject>Topography</subject><subject>Torque</subject><subject>Transplants &amp; implants</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlvFDEQhS1ERELgHyDUEhcuPfHWXi5IKGKTInFJzpaX6hkP0_Zgu5H49_FoAgcOnFy2vqryew-hNwRvCCbiZr-xvrmYNxTT_kQ2mLNn6IooqUY5CfW815LTUWJBLtHLWvcYM0WoeoEuGaOSsElfIXe_gyGm-bBC8jDkeYjL8WBTGwLUuE1DTkPryI-YoEVfT0SuFXJMDbbFttgBm8LgcoJe-F0udgvDLi-Qa7M11lfoYraHCq-fzmv08PnT_e3X8e77l2-3H-9GzyfRRhBaz45JyyQQL_jE5NzvWjsFMswKByyCcpQ56gkHx23o-pSatWXagmLX6P157rHknyvUZpZYPRy6GshrNZQLKYgQXHb03T_oPq8l9d91SlNGponoTvEz5UuXXGA2xxIXW34bgs0pA7M35wzMKQNDiOkZ9La3T8NXt0D42_TH9A58OAPQ3fgVoZjq48n-EAv4ZkKO_9_wCFcPmmE</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Liddell, Robert S.</creator><creator>Ajami, Elnaz</creator><creator>Li, Yunqing</creator><creator>Bajenova, Elena</creator><creator>Yang, Yuan</creator><creator>Davies, John E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5659-6275</orcidid></search><sort><creationdate>202102</creationdate><title>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</title><author>Liddell, Robert S. ; Ajami, Elnaz ; Li, Yunqing ; Bajenova, Elena ; Yang, Yuan ; Davies, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-e699fb37a37e1c64537ffb399b8e7df80d06d8b23b2c14eb4ad17488f9a39ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anchorages</topic><topic>Asymptotic methods</topic><topic>Bone (long)</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Curve fitting</topic><topic>Dental Implants</topic><topic>Design</topic><topic>Design modifications</topic><topic>Homeostasis</topic><topic>Kinetics</topic><topic>Osseointegration</topic><topic>Osteogenesis</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium - pharmacology</topic><topic>Topography</topic><topic>Torque</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liddell, Robert S.</creatorcontrib><creatorcontrib>Ajami, Elnaz</creatorcontrib><creatorcontrib>Li, Yunqing</creatorcontrib><creatorcontrib>Bajenova, Elena</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Davies, John E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liddell, Robert S.</au><au>Ajami, Elnaz</au><au>Li, Yunqing</au><au>Bajenova, Elena</au><au>Yang, Yuan</au><au>Davies, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>121</volume><spage>514</spage><epage>526</epage><pages>514-526</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33271359</pmid><doi>10.1016/j.actbio.2020.11.043</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5659-6275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-02, Vol.121, p.514-526
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2467616647
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Anchorages
Asymptotic methods
Bone (long)
Bone growth
Bone implants
Curve fitting
Dental Implants
Design
Design modifications
Homeostasis
Kinetics
Osseointegration
Osteogenesis
Surface Properties
Surgical implants
Titanium
Titanium - pharmacology
Topography
Torque
Transplants & implants
title The influence of implant design on the kinetics of osseointegration and bone anchorage homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20implant%20design%20on%20the%20kinetics%20of%20osseointegration%20and%20bone%20anchorage%20homeostasis&rft.jtitle=Acta%20biomaterialia&rft.au=Liddell,%20Robert%20S.&rft.date=2021-02&rft.volume=121&rft.spage=514&rft.epage=526&rft.pages=514-526&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.11.043&rft_dat=%3Cproquest_cross%3E2467616647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315519&rft_id=info:pmid/33271359&rft_els_id=S1742706120306978&rfr_iscdi=true