Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism

d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2021-01, Vol.20 (1), p.727-739
Hauptverfasser: Grimaldi, Manuela, Marino, Carmen, Buonocore, Michela, Santoro, Angelo, Sommella, Eduardo, Merciai, Fabrizio, Salviati, Emanuela, De Rosa, Arianna, Nuzzo, Tommaso, Errico, Francesco, Campiglia, Pietro, Usiello, Alessandro, D’Ursi, Anna Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 1
container_start_page 727
container_title Journal of proteome research
container_volume 20
creator Grimaldi, Manuela
Marino, Carmen
Buonocore, Michela
Santoro, Angelo
Sommella, Eduardo
Merciai, Fabrizio
Salviati, Emanuela
De Rosa, Arianna
Nuzzo, Tommaso
Errico, Francesco
Campiglia, Pietro
Usiello, Alessandro
D’Ursi, Anna Maria
description d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions of d-Ser are well known, many questions remain unanswered regarding the role of d-Asp in the central nervous system. d-Asp is very abundant at the embryonic stage, while it strongly decreases after birth because of the expression of d-aspartate oxidase (Ddo) enzyme, which catalyzes the oxidation of this d-amino acid into oxaloacetate, ammonium, and hydrogen peroxide. Pharmacologically, d-Asp acts as an endogenous agonist of N-methyl d-aspartate and mGlu5 receptors, which are known to control fundamental brain processes, including brain development, synaptic plasticity, and cognition. In this work, we studied a recently generated knockin mouse model (R26 d do/ d do ), which was designed to express DDO beginning at the zygotic stage. This strategy enables d-Asp to be almost eliminated in both prenatal and postnatal lives. To understand which biochemical pathways are affected by depletion of d-Asp, in this study, we carried out a metabolomic and lipidomic study of d do knockin brains at different stages of embryonic and postnatal development, combining nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) techniques. Our study shows that d-Asp deficiency in the brain influences amino acid pathways such as threonine, glycine, alanine, valine, and glutamate. Interestingly, d-Asp is also correlated with metabolites involved in brain development and functions such as choline, creatine, phosphocholine (PCho), glycerophosphocholine (GPCho), sphingolipids, and glycerophospholipids, as well as metabolites involved in brain energy metabolism, such as GPCho, glucose, and lactate.
doi_str_mv 10.1021/acs.jproteome.0c00622
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467615302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467615302</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-7ff14cd5f7f10931f14c0212d16369775f8ef423e9070e6b656e657a662ff2473</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIIGeX9CCx57qB0-RDI6Ok7SGHAQH5KzQEvLVgFFqiSVwrf-Qu_5unxJqdjJtScuFzM7uzMIfaZkSgmj57qO06c--AS-gympCZGM7aEjKriY8JKoT-_1RckP0XGMT4RQoQg_QIecM1WUBT1CL6sATidtsXYNvtbBbvDKx7TtzSHAOuSief3zdxZ7HZJOgK-gt5Ba7_DCGTuAqyFiO0K61nk8q9sGr3T6-Vtv4jd82XpwEH5kRo3zxhkcIfdHwSt4Buv7Dtwodxl06_AdJL32to3dKdo32kY4270n6PHm-mF-O1nef1_MZ8uJ5oKmiTKGFnUjjDKUlJyOv2wRa6jkslRKmAswBeOQXSEg11JIkEJpKZkxrFD8BH3dzs3b_RogpqprYw3Wagd-iBUrpJLZTMIyVGyhdfAxBjBVH9pOh01FSTUGU-Vgqo9gql0wmfdlJzGsO2g-WO9JZADdAt74fgguX_yfof8AboaiSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467615302</pqid></control><display><type>article</type><title>Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism</title><source>ACS Publications</source><creator>Grimaldi, Manuela ; Marino, Carmen ; Buonocore, Michela ; Santoro, Angelo ; Sommella, Eduardo ; Merciai, Fabrizio ; Salviati, Emanuela ; De Rosa, Arianna ; Nuzzo, Tommaso ; Errico, Francesco ; Campiglia, Pietro ; Usiello, Alessandro ; D’Ursi, Anna Maria</creator><creatorcontrib>Grimaldi, Manuela ; Marino, Carmen ; Buonocore, Michela ; Santoro, Angelo ; Sommella, Eduardo ; Merciai, Fabrizio ; Salviati, Emanuela ; De Rosa, Arianna ; Nuzzo, Tommaso ; Errico, Francesco ; Campiglia, Pietro ; Usiello, Alessandro ; D’Ursi, Anna Maria</creatorcontrib><description>d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions of d-Ser are well known, many questions remain unanswered regarding the role of d-Asp in the central nervous system. d-Asp is very abundant at the embryonic stage, while it strongly decreases after birth because of the expression of d-aspartate oxidase (Ddo) enzyme, which catalyzes the oxidation of this d-amino acid into oxaloacetate, ammonium, and hydrogen peroxide. Pharmacologically, d-Asp acts as an endogenous agonist of N-methyl d-aspartate and mGlu5 receptors, which are known to control fundamental brain processes, including brain development, synaptic plasticity, and cognition. In this work, we studied a recently generated knockin mouse model (R26 d do/ d do ), which was designed to express DDO beginning at the zygotic stage. This strategy enables d-Asp to be almost eliminated in both prenatal and postnatal lives. To understand which biochemical pathways are affected by depletion of d-Asp, in this study, we carried out a metabolomic and lipidomic study of d do knockin brains at different stages of embryonic and postnatal development, combining nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) techniques. Our study shows that d-Asp deficiency in the brain influences amino acid pathways such as threonine, glycine, alanine, valine, and glutamate. Interestingly, d-Asp is also correlated with metabolites involved in brain development and functions such as choline, creatine, phosphocholine (PCho), glycerophosphocholine (GPCho), sphingolipids, and glycerophospholipids, as well as metabolites involved in brain energy metabolism, such as GPCho, glucose, and lactate.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00622</identifier><identifier>PMID: 33274941</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of proteome research, 2021-01, Vol.20 (1), p.727-739</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-7ff14cd5f7f10931f14c0212d16369775f8ef423e9070e6b656e657a662ff2473</citedby><cites>FETCH-LOGICAL-a351t-7ff14cd5f7f10931f14c0212d16369775f8ef423e9070e6b656e657a662ff2473</cites><orcidid>0000-0001-6814-8472 ; 0000-0001-7354-8008 ; 0000-0003-1189-1729 ; 0000-0002-9690-907X ; 0000-0002-1069-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.0c00622$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.0c00622$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33274941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimaldi, Manuela</creatorcontrib><creatorcontrib>Marino, Carmen</creatorcontrib><creatorcontrib>Buonocore, Michela</creatorcontrib><creatorcontrib>Santoro, Angelo</creatorcontrib><creatorcontrib>Sommella, Eduardo</creatorcontrib><creatorcontrib>Merciai, Fabrizio</creatorcontrib><creatorcontrib>Salviati, Emanuela</creatorcontrib><creatorcontrib>De Rosa, Arianna</creatorcontrib><creatorcontrib>Nuzzo, Tommaso</creatorcontrib><creatorcontrib>Errico, Francesco</creatorcontrib><creatorcontrib>Campiglia, Pietro</creatorcontrib><creatorcontrib>Usiello, Alessandro</creatorcontrib><creatorcontrib>D’Ursi, Anna Maria</creatorcontrib><title>Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions of d-Ser are well known, many questions remain unanswered regarding the role of d-Asp in the central nervous system. d-Asp is very abundant at the embryonic stage, while it strongly decreases after birth because of the expression of d-aspartate oxidase (Ddo) enzyme, which catalyzes the oxidation of this d-amino acid into oxaloacetate, ammonium, and hydrogen peroxide. Pharmacologically, d-Asp acts as an endogenous agonist of N-methyl d-aspartate and mGlu5 receptors, which are known to control fundamental brain processes, including brain development, synaptic plasticity, and cognition. In this work, we studied a recently generated knockin mouse model (R26 d do/ d do ), which was designed to express DDO beginning at the zygotic stage. This strategy enables d-Asp to be almost eliminated in both prenatal and postnatal lives. To understand which biochemical pathways are affected by depletion of d-Asp, in this study, we carried out a metabolomic and lipidomic study of d do knockin brains at different stages of embryonic and postnatal development, combining nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) techniques. Our study shows that d-Asp deficiency in the brain influences amino acid pathways such as threonine, glycine, alanine, valine, and glutamate. Interestingly, d-Asp is also correlated with metabolites involved in brain development and functions such as choline, creatine, phosphocholine (PCho), glycerophosphocholine (GPCho), sphingolipids, and glycerophospholipids, as well as metabolites involved in brain energy metabolism, such as GPCho, glucose, and lactate.</description><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUctu2zAQJIIGeX9CCx57qB0-RDI6Ok7SGHAQH5KzQEvLVgFFqiSVwrf-Qu_5unxJqdjJtScuFzM7uzMIfaZkSgmj57qO06c--AS-gympCZGM7aEjKriY8JKoT-_1RckP0XGMT4RQoQg_QIecM1WUBT1CL6sATidtsXYNvtbBbvDKx7TtzSHAOuSief3zdxZ7HZJOgK-gt5Ba7_DCGTuAqyFiO0K61nk8q9sGr3T6-Vtv4jd82XpwEH5kRo3zxhkcIfdHwSt4Buv7Dtwodxl06_AdJL32to3dKdo32kY4270n6PHm-mF-O1nef1_MZ8uJ5oKmiTKGFnUjjDKUlJyOv2wRa6jkslRKmAswBeOQXSEg11JIkEJpKZkxrFD8BH3dzs3b_RogpqprYw3Wagd-iBUrpJLZTMIyVGyhdfAxBjBVH9pOh01FSTUGU-Vgqo9gql0wmfdlJzGsO2g-WO9JZADdAt74fgguX_yfof8AboaiSA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Grimaldi, Manuela</creator><creator>Marino, Carmen</creator><creator>Buonocore, Michela</creator><creator>Santoro, Angelo</creator><creator>Sommella, Eduardo</creator><creator>Merciai, Fabrizio</creator><creator>Salviati, Emanuela</creator><creator>De Rosa, Arianna</creator><creator>Nuzzo, Tommaso</creator><creator>Errico, Francesco</creator><creator>Campiglia, Pietro</creator><creator>Usiello, Alessandro</creator><creator>D’Ursi, Anna Maria</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6814-8472</orcidid><orcidid>https://orcid.org/0000-0001-7354-8008</orcidid><orcidid>https://orcid.org/0000-0003-1189-1729</orcidid><orcidid>https://orcid.org/0000-0002-9690-907X</orcidid><orcidid>https://orcid.org/0000-0002-1069-2181</orcidid></search><sort><creationdate>20210101</creationdate><title>Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism</title><author>Grimaldi, Manuela ; Marino, Carmen ; Buonocore, Michela ; Santoro, Angelo ; Sommella, Eduardo ; Merciai, Fabrizio ; Salviati, Emanuela ; De Rosa, Arianna ; Nuzzo, Tommaso ; Errico, Francesco ; Campiglia, Pietro ; Usiello, Alessandro ; D’Ursi, Anna Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-7ff14cd5f7f10931f14c0212d16369775f8ef423e9070e6b656e657a662ff2473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimaldi, Manuela</creatorcontrib><creatorcontrib>Marino, Carmen</creatorcontrib><creatorcontrib>Buonocore, Michela</creatorcontrib><creatorcontrib>Santoro, Angelo</creatorcontrib><creatorcontrib>Sommella, Eduardo</creatorcontrib><creatorcontrib>Merciai, Fabrizio</creatorcontrib><creatorcontrib>Salviati, Emanuela</creatorcontrib><creatorcontrib>De Rosa, Arianna</creatorcontrib><creatorcontrib>Nuzzo, Tommaso</creatorcontrib><creatorcontrib>Errico, Francesco</creatorcontrib><creatorcontrib>Campiglia, Pietro</creatorcontrib><creatorcontrib>Usiello, Alessandro</creatorcontrib><creatorcontrib>D’Ursi, Anna Maria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimaldi, Manuela</au><au>Marino, Carmen</au><au>Buonocore, Michela</au><au>Santoro, Angelo</au><au>Sommella, Eduardo</au><au>Merciai, Fabrizio</au><au>Salviati, Emanuela</au><au>De Rosa, Arianna</au><au>Nuzzo, Tommaso</au><au>Errico, Francesco</au><au>Campiglia, Pietro</au><au>Usiello, Alessandro</au><au>D’Ursi, Anna Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><spage>727</spage><epage>739</epage><pages>727-739</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions of d-Ser are well known, many questions remain unanswered regarding the role of d-Asp in the central nervous system. d-Asp is very abundant at the embryonic stage, while it strongly decreases after birth because of the expression of d-aspartate oxidase (Ddo) enzyme, which catalyzes the oxidation of this d-amino acid into oxaloacetate, ammonium, and hydrogen peroxide. Pharmacologically, d-Asp acts as an endogenous agonist of N-methyl d-aspartate and mGlu5 receptors, which are known to control fundamental brain processes, including brain development, synaptic plasticity, and cognition. In this work, we studied a recently generated knockin mouse model (R26 d do/ d do ), which was designed to express DDO beginning at the zygotic stage. This strategy enables d-Asp to be almost eliminated in both prenatal and postnatal lives. To understand which biochemical pathways are affected by depletion of d-Asp, in this study, we carried out a metabolomic and lipidomic study of d do knockin brains at different stages of embryonic and postnatal development, combining nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) techniques. Our study shows that d-Asp deficiency in the brain influences amino acid pathways such as threonine, glycine, alanine, valine, and glutamate. Interestingly, d-Asp is also correlated with metabolites involved in brain development and functions such as choline, creatine, phosphocholine (PCho), glycerophosphocholine (GPCho), sphingolipids, and glycerophospholipids, as well as metabolites involved in brain energy metabolism, such as GPCho, glucose, and lactate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33274941</pmid><doi>10.1021/acs.jproteome.0c00622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6814-8472</orcidid><orcidid>https://orcid.org/0000-0001-7354-8008</orcidid><orcidid>https://orcid.org/0000-0003-1189-1729</orcidid><orcidid>https://orcid.org/0000-0002-9690-907X</orcidid><orcidid>https://orcid.org/0000-0002-1069-2181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2021-01, Vol.20 (1), p.727-739
issn 1535-3893
1535-3907
language eng
recordid cdi_proquest_miscellaneous_2467615302
source ACS Publications
title Prenatal and Early Postnatal Cerebral d‑Aspartate Depletion Influences l‑Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prenatal%20and%20Early%20Postnatal%20Cerebral%20d%E2%80%91Aspartate%20Depletion%20Influences%20l%E2%80%91Amino%20Acid%20Pathways,%20Bioenergetic%20processes,%20and%20Developmental%20Brain%20Metabolism&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Grimaldi,%20Manuela&rft.date=2021-01-01&rft.volume=20&rft.issue=1&rft.spage=727&rft.epage=739&rft.pages=727-739&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00622&rft_dat=%3Cproquest_cross%3E2467615302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467615302&rft_id=info:pmid/33274941&rfr_iscdi=true