Postnatal connectomic development of inhibition in mouse barrel cortex
Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, an...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6528) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6528 |
container_start_page | |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 371 |
creator | Gour, Anjali Boergens, Kevin M Heike, Natalie Hua, Yunfeng Laserstein, Philip Song, Kun Helmstaedter, Moritz |
description | Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development. |
doi_str_mv | 10.1126/science.abb4534 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467614677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467614677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</originalsourceid><addsrcrecordid>eNpdkEFLxDAQhYMo7rp69iYFL166O0matjnK4qqwoAc9lySdYpc2WZNW9N-bxerBy8zAfO_xeIRcUlhSyvJVMC1ag0uldSZ4dkTmFKRIJQN-TOYAPE9LKMSMnIWwA4g_yU_JjHNWcMjpnGyeXRisGlSXGGctmsH1rUlq_MDO7Xu0Q-KapLVvrW6H1tl4Jr0bAyZaeY8HlR_w85ycNKoLeDHtBXnd3L2sH9Lt0_3j-nabmoyzIZXU0BJrjQzLImsEqxUDqKlGLVFEBOMEQYUpadNgQyXjCoTmUgDoXPAFufnx3Xv3PmIYqr4NBrtOWYypKpblRU7jKCJ6_Q_dudHbmG6iIJMyUqsfyngXgsem2vu2V_6rolAdKq6miqup4qi4mnxH3WP9x_92yr8BYpx5LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467610499</pqid></control><display><type>article</type><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</creator><creatorcontrib>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</creatorcontrib><description>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb4534</identifier><identifier>PMID: 33273061</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Animals ; Axons ; Axons - ultrastructure ; Brain ; Cartridges ; Cerebral cortex ; Circuits ; Connectome ; Cortex (barrel) ; Data acquisition ; Datasets as Topic ; Dendrites ; Dendrites - ultrastructure ; Electron microscopy ; Environmental conditions ; GABAergic Neurons - physiology ; GABAergic Neurons - ultrastructure ; Imaging, Three-Dimensional - methods ; Interneurons - physiology ; Interneurons - ultrastructure ; Mammals ; Mapping ; Mice ; Microscopy ; Microscopy, Electron - methods ; Nerve Net - growth & development ; Nerve Net - ultrastructure ; Nervous tissues ; Neural networks ; Neurons ; Neurotransmitters ; Preferences ; Segments ; Somatosensory cortex ; Somatosensory Cortex - growth & development ; Somatosensory Cortex - ultrastructure ; Synapses ; Synapses - physiology ; Synapses - ultrastructure ; Time measurement</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</citedby><cites>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</cites><orcidid>0000-0002-6748-7971 ; 0000-0001-5729-6007 ; 0000-0001-7973-0767 ; 0000-0003-0072-7122 ; 0000-0002-1773-4727 ; 0000-0002-0737-7746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33273061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gour, Anjali</creatorcontrib><creatorcontrib>Boergens, Kevin M</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - ultrastructure</subject><subject>Brain</subject><subject>Cartridges</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Connectome</subject><subject>Cortex (barrel)</subject><subject>Data acquisition</subject><subject>Datasets as Topic</subject><subject>Dendrites</subject><subject>Dendrites - ultrastructure</subject><subject>Electron microscopy</subject><subject>Environmental conditions</subject><subject>GABAergic Neurons - physiology</subject><subject>GABAergic Neurons - ultrastructure</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interneurons - physiology</subject><subject>Interneurons - ultrastructure</subject><subject>Mammals</subject><subject>Mapping</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Electron - methods</subject><subject>Nerve Net - growth & development</subject><subject>Nerve Net - ultrastructure</subject><subject>Nervous tissues</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Preferences</subject><subject>Segments</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - growth & development</subject><subject>Somatosensory Cortex - ultrastructure</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time measurement</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEFLxDAQhYMo7rp69iYFL166O0matjnK4qqwoAc9lySdYpc2WZNW9N-bxerBy8zAfO_xeIRcUlhSyvJVMC1ag0uldSZ4dkTmFKRIJQN-TOYAPE9LKMSMnIWwA4g_yU_JjHNWcMjpnGyeXRisGlSXGGctmsH1rUlq_MDO7Xu0Q-KapLVvrW6H1tl4Jr0bAyZaeY8HlR_w85ycNKoLeDHtBXnd3L2sH9Lt0_3j-nabmoyzIZXU0BJrjQzLImsEqxUDqKlGLVFEBOMEQYUpadNgQyXjCoTmUgDoXPAFufnx3Xv3PmIYqr4NBrtOWYypKpblRU7jKCJ6_Q_dudHbmG6iIJMyUqsfyngXgsem2vu2V_6rolAdKq6miqup4qi4mnxH3WP9x_92yr8BYpx5LA</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Gour, Anjali</creator><creator>Boergens, Kevin M</creator><creator>Heike, Natalie</creator><creator>Hua, Yunfeng</creator><creator>Laserstein, Philip</creator><creator>Song, Kun</creator><creator>Helmstaedter, Moritz</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6748-7971</orcidid><orcidid>https://orcid.org/0000-0001-5729-6007</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0003-0072-7122</orcidid><orcidid>https://orcid.org/0000-0002-1773-4727</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid></search><sort><creationdate>20210129</creationdate><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><author>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - ultrastructure</topic><topic>Brain</topic><topic>Cartridges</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Connectome</topic><topic>Cortex (barrel)</topic><topic>Data acquisition</topic><topic>Datasets as Topic</topic><topic>Dendrites</topic><topic>Dendrites - ultrastructure</topic><topic>Electron microscopy</topic><topic>Environmental conditions</topic><topic>GABAergic Neurons - physiology</topic><topic>GABAergic Neurons - ultrastructure</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interneurons - physiology</topic><topic>Interneurons - ultrastructure</topic><topic>Mammals</topic><topic>Mapping</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Electron - methods</topic><topic>Nerve Net - growth & development</topic><topic>Nerve Net - ultrastructure</topic><topic>Nervous tissues</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Preferences</topic><topic>Segments</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - growth & development</topic><topic>Somatosensory Cortex - ultrastructure</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gour, Anjali</creatorcontrib><creatorcontrib>Boergens, Kevin M</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gour, Anjali</au><au>Boergens, Kevin M</au><au>Heike, Natalie</au><au>Hua, Yunfeng</au><au>Laserstein, Philip</au><au>Song, Kun</au><au>Helmstaedter, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postnatal connectomic development of inhibition in mouse barrel cortex</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>371</volume><issue>6528</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33273061</pmid><doi>10.1126/science.abb4534</doi><orcidid>https://orcid.org/0000-0002-6748-7971</orcidid><orcidid>https://orcid.org/0000-0001-5729-6007</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0003-0072-7122</orcidid><orcidid>https://orcid.org/0000-0002-1773-4727</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528) |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2467614677 |
source | MEDLINE; American Association for the Advancement of Science |
subjects | Animals Axons Axons - ultrastructure Brain Cartridges Cerebral cortex Circuits Connectome Cortex (barrel) Data acquisition Datasets as Topic Dendrites Dendrites - ultrastructure Electron microscopy Environmental conditions GABAergic Neurons - physiology GABAergic Neurons - ultrastructure Imaging, Three-Dimensional - methods Interneurons - physiology Interneurons - ultrastructure Mammals Mapping Mice Microscopy Microscopy, Electron - methods Nerve Net - growth & development Nerve Net - ultrastructure Nervous tissues Neural networks Neurons Neurotransmitters Preferences Segments Somatosensory cortex Somatosensory Cortex - growth & development Somatosensory Cortex - ultrastructure Synapses Synapses - physiology Synapses - ultrastructure Time measurement |
title | Postnatal connectomic development of inhibition in mouse barrel cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postnatal%20connectomic%20development%20of%20inhibition%20in%20mouse%20barrel%20cortex&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Gour,%20Anjali&rft.date=2021-01-29&rft.volume=371&rft.issue=6528&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb4534&rft_dat=%3Cproquest_cross%3E2467614677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467610499&rft_id=info:pmid/33273061&rfr_iscdi=true |