Postnatal connectomic development of inhibition in mouse barrel cortex

Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6528)
Hauptverfasser: Gour, Anjali, Boergens, Kevin M, Heike, Natalie, Hua, Yunfeng, Laserstein, Philip, Song, Kun, Helmstaedter, Moritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6528
container_start_page
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator Gour, Anjali
Boergens, Kevin M
Heike, Natalie
Hua, Yunfeng
Laserstein, Philip
Song, Kun
Helmstaedter, Moritz
description Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.
doi_str_mv 10.1126/science.abb4534
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2467614677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467614677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</originalsourceid><addsrcrecordid>eNpdkEFLxDAQhYMo7rp69iYFL166O0matjnK4qqwoAc9lySdYpc2WZNW9N-bxerBy8zAfO_xeIRcUlhSyvJVMC1ag0uldSZ4dkTmFKRIJQN-TOYAPE9LKMSMnIWwA4g_yU_JjHNWcMjpnGyeXRisGlSXGGctmsH1rUlq_MDO7Xu0Q-KapLVvrW6H1tl4Jr0bAyZaeY8HlR_w85ycNKoLeDHtBXnd3L2sH9Lt0_3j-nabmoyzIZXU0BJrjQzLImsEqxUDqKlGLVFEBOMEQYUpadNgQyXjCoTmUgDoXPAFufnx3Xv3PmIYqr4NBrtOWYypKpblRU7jKCJ6_Q_dudHbmG6iIJMyUqsfyngXgsem2vu2V_6rolAdKq6miqup4qi4mnxH3WP9x_92yr8BYpx5LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467610499</pqid></control><display><type>article</type><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</creator><creatorcontrib>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</creatorcontrib><description>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb4534</identifier><identifier>PMID: 33273061</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Animals ; Axons ; Axons - ultrastructure ; Brain ; Cartridges ; Cerebral cortex ; Circuits ; Connectome ; Cortex (barrel) ; Data acquisition ; Datasets as Topic ; Dendrites ; Dendrites - ultrastructure ; Electron microscopy ; Environmental conditions ; GABAergic Neurons - physiology ; GABAergic Neurons - ultrastructure ; Imaging, Three-Dimensional - methods ; Interneurons - physiology ; Interneurons - ultrastructure ; Mammals ; Mapping ; Mice ; Microscopy ; Microscopy, Electron - methods ; Nerve Net - growth &amp; development ; Nerve Net - ultrastructure ; Nervous tissues ; Neural networks ; Neurons ; Neurotransmitters ; Preferences ; Segments ; Somatosensory cortex ; Somatosensory Cortex - growth &amp; development ; Somatosensory Cortex - ultrastructure ; Synapses ; Synapses - physiology ; Synapses - ultrastructure ; Time measurement</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</citedby><cites>FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</cites><orcidid>0000-0002-6748-7971 ; 0000-0001-5729-6007 ; 0000-0001-7973-0767 ; 0000-0003-0072-7122 ; 0000-0002-1773-4727 ; 0000-0002-0737-7746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33273061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gour, Anjali</creatorcontrib><creatorcontrib>Boergens, Kevin M</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - ultrastructure</subject><subject>Brain</subject><subject>Cartridges</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Connectome</subject><subject>Cortex (barrel)</subject><subject>Data acquisition</subject><subject>Datasets as Topic</subject><subject>Dendrites</subject><subject>Dendrites - ultrastructure</subject><subject>Electron microscopy</subject><subject>Environmental conditions</subject><subject>GABAergic Neurons - physiology</subject><subject>GABAergic Neurons - ultrastructure</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interneurons - physiology</subject><subject>Interneurons - ultrastructure</subject><subject>Mammals</subject><subject>Mapping</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Electron - methods</subject><subject>Nerve Net - growth &amp; development</subject><subject>Nerve Net - ultrastructure</subject><subject>Nervous tissues</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Preferences</subject><subject>Segments</subject><subject>Somatosensory cortex</subject><subject>Somatosensory Cortex - growth &amp; development</subject><subject>Somatosensory Cortex - ultrastructure</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time measurement</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEFLxDAQhYMo7rp69iYFL166O0matjnK4qqwoAc9lySdYpc2WZNW9N-bxerBy8zAfO_xeIRcUlhSyvJVMC1ag0uldSZ4dkTmFKRIJQN-TOYAPE9LKMSMnIWwA4g_yU_JjHNWcMjpnGyeXRisGlSXGGctmsH1rUlq_MDO7Xu0Q-KapLVvrW6H1tl4Jr0bAyZaeY8HlR_w85ycNKoLeDHtBXnd3L2sH9Lt0_3j-nabmoyzIZXU0BJrjQzLImsEqxUDqKlGLVFEBOMEQYUpadNgQyXjCoTmUgDoXPAFufnx3Xv3PmIYqr4NBrtOWYypKpblRU7jKCJ6_Q_dudHbmG6iIJMyUqsfyngXgsem2vu2V_6rolAdKq6miqup4qi4mnxH3WP9x_92yr8BYpx5LA</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Gour, Anjali</creator><creator>Boergens, Kevin M</creator><creator>Heike, Natalie</creator><creator>Hua, Yunfeng</creator><creator>Laserstein, Philip</creator><creator>Song, Kun</creator><creator>Helmstaedter, Moritz</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6748-7971</orcidid><orcidid>https://orcid.org/0000-0001-5729-6007</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0003-0072-7122</orcidid><orcidid>https://orcid.org/0000-0002-1773-4727</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid></search><sort><creationdate>20210129</creationdate><title>Postnatal connectomic development of inhibition in mouse barrel cortex</title><author>Gour, Anjali ; Boergens, Kevin M ; Heike, Natalie ; Hua, Yunfeng ; Laserstein, Philip ; Song, Kun ; Helmstaedter, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-91c18edbe2e874f52da200d1beb9e5432ee540515c81ffef1923a05b39500b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - ultrastructure</topic><topic>Brain</topic><topic>Cartridges</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Connectome</topic><topic>Cortex (barrel)</topic><topic>Data acquisition</topic><topic>Datasets as Topic</topic><topic>Dendrites</topic><topic>Dendrites - ultrastructure</topic><topic>Electron microscopy</topic><topic>Environmental conditions</topic><topic>GABAergic Neurons - physiology</topic><topic>GABAergic Neurons - ultrastructure</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interneurons - physiology</topic><topic>Interneurons - ultrastructure</topic><topic>Mammals</topic><topic>Mapping</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Electron - methods</topic><topic>Nerve Net - growth &amp; development</topic><topic>Nerve Net - ultrastructure</topic><topic>Nervous tissues</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Preferences</topic><topic>Segments</topic><topic>Somatosensory cortex</topic><topic>Somatosensory Cortex - growth &amp; development</topic><topic>Somatosensory Cortex - ultrastructure</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gour, Anjali</creatorcontrib><creatorcontrib>Boergens, Kevin M</creatorcontrib><creatorcontrib>Heike, Natalie</creatorcontrib><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Song, Kun</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gour, Anjali</au><au>Boergens, Kevin M</au><au>Heike, Natalie</au><au>Hua, Yunfeng</au><au>Laserstein, Philip</au><au>Song, Kun</au><au>Helmstaedter, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postnatal connectomic development of inhibition in mouse barrel cortex</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>371</volume><issue>6528</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33273061</pmid><doi>10.1126/science.abb4534</doi><orcidid>https://orcid.org/0000-0002-6748-7971</orcidid><orcidid>https://orcid.org/0000-0001-5729-6007</orcidid><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><orcidid>https://orcid.org/0000-0003-0072-7122</orcidid><orcidid>https://orcid.org/0000-0002-1773-4727</orcidid><orcidid>https://orcid.org/0000-0002-0737-7746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528)
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2467614677
source MEDLINE; American Association for the Advancement of Science
subjects Animals
Axons
Axons - ultrastructure
Brain
Cartridges
Cerebral cortex
Circuits
Connectome
Cortex (barrel)
Data acquisition
Datasets as Topic
Dendrites
Dendrites - ultrastructure
Electron microscopy
Environmental conditions
GABAergic Neurons - physiology
GABAergic Neurons - ultrastructure
Imaging, Three-Dimensional - methods
Interneurons - physiology
Interneurons - ultrastructure
Mammals
Mapping
Mice
Microscopy
Microscopy, Electron - methods
Nerve Net - growth & development
Nerve Net - ultrastructure
Nervous tissues
Neural networks
Neurons
Neurotransmitters
Preferences
Segments
Somatosensory cortex
Somatosensory Cortex - growth & development
Somatosensory Cortex - ultrastructure
Synapses
Synapses - physiology
Synapses - ultrastructure
Time measurement
title Postnatal connectomic development of inhibition in mouse barrel cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postnatal%20connectomic%20development%20of%20inhibition%20in%20mouse%20barrel%20cortex&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Gour,%20Anjali&rft.date=2021-01-29&rft.volume=371&rft.issue=6528&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb4534&rft_dat=%3Cproquest_cross%3E2467614677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467610499&rft_id=info:pmid/33273061&rfr_iscdi=true