A Novel Fluorescence-Based Method to Evaluate Ileal Apical Sodium-Dependent Bile Acid Transporter ASBT

This study aimed to demonstrate usefulness of the fluorophore-labeled bile acid derivative, N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2′-aminoethane sulfonate (tauro-nor-THCA-24-DBD) as a substrate of apical sodium-dependent bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2021-03, Vol.110 (3), p.1392-1400
Hauptverfasser: Zhu, Qiunan, Komori, Hisakazu, Imamura, Rikako, Tamai, Ikumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to demonstrate usefulness of the fluorophore-labeled bile acid derivative, N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2′-aminoethane sulfonate (tauro-nor-THCA-24-DBD) as a substrate of apical sodium-dependent bile acid transporter (ASBT, SLC10A2), which is expressed at distal ileum for reabsorption of bile acids and to find a novel fluorescence-based method to evaluate ASBT activity. In HPLC analysis, chromatogram of tauro-nor-THCA-24-DBD showed double peaks: R- and S-isomers of the compound. When ASBT was expressed in Xenopus laevis oocytes, their uptakes were higher than those by control oocytes, demonstrating both are transported by ASBT. Therefore, results were analyzed separately as peak 1, peak 2 and sum of them. Concentration dependent uptake of tauro-nor-THCA-24-DBD in ASBT-expressing oocytes was saturable with Km 122 μM and Vmax 1.49 pmol/oocyte/30 min for peak 1, 30.7 μM and 1.34 pmol/oocyte/30 min for peak 2, and 40.6 μM and 2.36 pmol/oocyte/30 min for sum, respectively. These uptakes were decreased in the presence of taurocholic acid and in the Na+ free condition. Furthermore, in Caco-2 cells, tauro-nor-THCA-24-DBD uptake was also Na+-dependent and saturable. Additionally, these uptakes were decreased by elobixibat, a selective ASBT inhibitor. Accordingly, it was concluded that tauro-nor-THCA-24-DBD is a substrate of ASBT and useful to evaluate the intestinal ASBT transport activity.
ISSN:0022-3549
1520-6017
DOI:10.1016/j.xphs.2020.11.030