Numerical linear algebra aspects of control design computations
The interplay between recent results and methodologies in numerical linear algebra and mathematical software and their application to problems arising in systems, control, and estimation theory is discussed. The impact of finite precision, finite range arithmetic [including the implications of the p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1985-02, Vol.30 (2), p.97-108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 2 |
container_start_page | 97 |
container_title | IEEE transactions on automatic control |
container_volume | 30 |
creator | Laub, A. |
description | The interplay between recent results and methodologies in numerical linear algebra and mathematical software and their application to problems arising in systems, control, and estimation theory is discussed. The impact of finite precision, finite range arithmetic [including the implications of the proposed IEEE floating point standard(s)] on control design computations is illustrated with numerous examples as are pertinent remarks concerning numerical stability and conditioning. Basic tools from numerical linear algebra such as linear equations, linear least squares, eigenproblems, generalized eigenproblems, and singular value decomposition are then outlined. A selected list of applications of the basic tools then follows including algorithms for solution of problems such as matrix exponentials, frequency response, system balancing, and matrix Riccati equations. The implementation of such algorithms as robust mathematical software is then discussed. A number of issues are addressed including characteristics of reliable mathematical software, availability and evaluation, language implications (Fortran, Ada, etc.), and the overall role of mathematical software as a component of computer-aided control system design. |
doi_str_mv | 10.1109/TAC.1985.1103900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_24674584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1103900</ieee_id><sourcerecordid>28434536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-c7f50e7e72be7a22944482f354b4788116b7c0c01294f882a1e3d64731198dbd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7eBS89iLeu-WzSkyyLX7DoZT2HNJ0ukbapSXvw35tlix49DS_zzAvzIHRN8IoQXN7v1psVKZU4JFZifIIWRAiVU0HZKVpgTFReUlWco4sYP1MsOCcL9PA2dRCcNW3Wuh5MyEy7hyqYzMQB7Bgz32TW92PwbVZDdPs-xW6YRjM638dLdNaYNsLVPJfo4-lxt3nJt-_Pr5v1NreM8zG3shEYJEhagTSUlpxzRRsmeMWlUoQUlbTYYpI2jVLUEGB1wSUj6ae6qtkS3R17h-C_Joij7ly00LamBz9FTVUpFUu__g9yxgUr_gd5IblI9BLhI2iDjzFAo4fgOhO-NcH64F4n9_rgXs_u08nt3G1iUtsE01sXf-9KrAohZMJujpgDgL_WueQHE5mK4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24674584</pqid></control><display><type>article</type><title>Numerical linear algebra aspects of control design computations</title><source>IEEE Electronic Library (IEL)</source><creator>Laub, A.</creator><creatorcontrib>Laub, A.</creatorcontrib><description>The interplay between recent results and methodologies in numerical linear algebra and mathematical software and their application to problems arising in systems, control, and estimation theory is discussed. The impact of finite precision, finite range arithmetic [including the implications of the proposed IEEE floating point standard(s)] on control design computations is illustrated with numerous examples as are pertinent remarks concerning numerical stability and conditioning. Basic tools from numerical linear algebra such as linear equations, linear least squares, eigenproblems, generalized eigenproblems, and singular value decomposition are then outlined. A selected list of applications of the basic tools then follows including algorithms for solution of problems such as matrix exponentials, frequency response, system balancing, and matrix Riccati equations. The implementation of such algorithms as robust mathematical software is then discussed. A number of issues are addressed including characteristics of reliable mathematical software, availability and evaluation, language implications (Fortran, Ada, etc.), and the overall role of mathematical software as a component of computer-aided control system design.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1985.1103900</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Application software ; Applied sciences ; Computer science; control theory; systems ; Control design ; Control system synthesis ; Control systems ; Control theory. Systems ; Estimation theory ; Exact sciences and technology ; Floating-point arithmetic ; Least squares methods ; Linear algebra ; Matrix decomposition ; Numerical stability ; Riccati equations</subject><ispartof>IEEE transactions on automatic control, 1985-02, Vol.30 (2), p.97-108</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-c7f50e7e72be7a22944482f354b4788116b7c0c01294f882a1e3d64731198dbd3</citedby><cites>FETCH-LOGICAL-c344t-c7f50e7e72be7a22944482f354b4788116b7c0c01294f882a1e3d64731198dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1103900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1103900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9086557$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laub, A.</creatorcontrib><title>Numerical linear algebra aspects of control design computations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The interplay between recent results and methodologies in numerical linear algebra and mathematical software and their application to problems arising in systems, control, and estimation theory is discussed. The impact of finite precision, finite range arithmetic [including the implications of the proposed IEEE floating point standard(s)] on control design computations is illustrated with numerous examples as are pertinent remarks concerning numerical stability and conditioning. Basic tools from numerical linear algebra such as linear equations, linear least squares, eigenproblems, generalized eigenproblems, and singular value decomposition are then outlined. A selected list of applications of the basic tools then follows including algorithms for solution of problems such as matrix exponentials, frequency response, system balancing, and matrix Riccati equations. The implementation of such algorithms as robust mathematical software is then discussed. A number of issues are addressed including characteristics of reliable mathematical software, availability and evaluation, language implications (Fortran, Ada, etc.), and the overall role of mathematical software as a component of computer-aided control system design.</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control design</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Estimation theory</subject><subject>Exact sciences and technology</subject><subject>Floating-point arithmetic</subject><subject>Least squares methods</subject><subject>Linear algebra</subject><subject>Matrix decomposition</subject><subject>Numerical stability</subject><subject>Riccati equations</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7eBS89iLeu-WzSkyyLX7DoZT2HNJ0ukbapSXvw35tlix49DS_zzAvzIHRN8IoQXN7v1psVKZU4JFZifIIWRAiVU0HZKVpgTFReUlWco4sYP1MsOCcL9PA2dRCcNW3Wuh5MyEy7hyqYzMQB7Bgz32TW92PwbVZDdPs-xW6YRjM638dLdNaYNsLVPJfo4-lxt3nJt-_Pr5v1NreM8zG3shEYJEhagTSUlpxzRRsmeMWlUoQUlbTYYpI2jVLUEGB1wSUj6ae6qtkS3R17h-C_Joij7ly00LamBz9FTVUpFUu__g9yxgUr_gd5IblI9BLhI2iDjzFAo4fgOhO-NcH64F4n9_rgXs_u08nt3G1iUtsE01sXf-9KrAohZMJujpgDgL_WueQHE5mK4Q</recordid><startdate>19850201</startdate><enddate>19850201</enddate><creator>Laub, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19850201</creationdate><title>Numerical linear algebra aspects of control design computations</title><author>Laub, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-c7f50e7e72be7a22944482f354b4788116b7c0c01294f882a1e3d64731198dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control design</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Estimation theory</topic><topic>Exact sciences and technology</topic><topic>Floating-point arithmetic</topic><topic>Least squares methods</topic><topic>Linear algebra</topic><topic>Matrix decomposition</topic><topic>Numerical stability</topic><topic>Riccati equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laub, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laub, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical linear algebra aspects of control design computations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1985-02-01</date><risdate>1985</risdate><volume>30</volume><issue>2</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The interplay between recent results and methodologies in numerical linear algebra and mathematical software and their application to problems arising in systems, control, and estimation theory is discussed. The impact of finite precision, finite range arithmetic [including the implications of the proposed IEEE floating point standard(s)] on control design computations is illustrated with numerous examples as are pertinent remarks concerning numerical stability and conditioning. Basic tools from numerical linear algebra such as linear equations, linear least squares, eigenproblems, generalized eigenproblems, and singular value decomposition are then outlined. A selected list of applications of the basic tools then follows including algorithms for solution of problems such as matrix exponentials, frequency response, system balancing, and matrix Riccati equations. The implementation of such algorithms as robust mathematical software is then discussed. A number of issues are addressed including characteristics of reliable mathematical software, availability and evaluation, language implications (Fortran, Ada, etc.), and the overall role of mathematical software as a component of computer-aided control system design.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1985.1103900</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1985-02, Vol.30 (2), p.97-108 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_24674584 |
source | IEEE Electronic Library (IEL) |
subjects | Application software Applied sciences Computer science control theory systems Control design Control system synthesis Control systems Control theory. Systems Estimation theory Exact sciences and technology Floating-point arithmetic Least squares methods Linear algebra Matrix decomposition Numerical stability Riccati equations |
title | Numerical linear algebra aspects of control design computations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20linear%20algebra%20aspects%20of%20control%20design%20computations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Laub,%20A.&rft.date=1985-02-01&rft.volume=30&rft.issue=2&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1985.1103900&rft_dat=%3Cproquest_RIE%3E28434536%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24674584&rft_id=info:pmid/&rft_ieee_id=1103900&rfr_iscdi=true |