Drug2ways: Reasoning over causal paths in biological networks for drug discovery
Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological st...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2020-12, Vol.16 (12), p.e1008464-e1008464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008464 |
---|---|
container_issue | 12 |
container_start_page | e1008464 |
container_title | PLoS computational biology |
container_volume | 16 |
creator | Rivas-Barragan, Daniel Mubeen, Sarah Guim Bernat, Francesc Hofmann-Apitius, Martin Domingo-Fernández, Daniel |
description | Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats. |
doi_str_mv | 10.1371/journal.pcbi.1008464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466772397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a0a17cecb874771be76cf296bdc29f6</doaj_id><sourcerecordid>2466772397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhS0Eohf4B6jyIy-79S12zAMS2tKLVAmE4NkaX5J6m40XO2m1_56E3Vbtk0fjc74ZzUHoEyVLyhU9X6cx99Att87GJSWkFlK8Qce0qvhC8ap--6I-QielrAmZSi3foyPOmRSsJsfo50UeW_YIu_IF_wpQUh_7FqeHkLGDsUCHtzDcFRx7bGPqUhvd1OvD8JjyfcFNythPBOxjcbNr9wG9a6Ar4ePhPUV_Lr__Xl0vbn9c3ay-3S6cUGJYaKErFrgE7gVI24jgQFa6okA4q1VVC9FYXxPvdK28lFYwaJyX1jKtCCh-im72XJ9gbbY5biDvTIJo_jdSbg3kIbouGA0EqHLB2VoJpagNSrqGaWm9Y7qRE-vrnrUd7SZ4F_ohQ_cK-vqnj3emTQ9GTceVal7m8wGQ098xlMFspnuEroM-pLEYJuQkY1zPUrGXupxKyaF5HkOJmYM1h2DNHKw5BDvZzl6u-Gx6SpL_A4l7pIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466772397</pqid></control><display><type>article</type><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</creator><creatorcontrib>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</creatorcontrib><description>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008464</identifier><identifier>PMID: 33264280</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biology and Life Sciences ; Computer and Information Sciences ; Computer Simulation ; Drug Discovery - methods ; Drug Repositioning - methods ; Drug Therapy ; Humans ; Medicine and Health Sciences ; Models, Biological ; Neoplasms - drug therapy ; Phenotype ; Physical Sciences ; Polypharmacology ; Research and Analysis Methods</subject><ispartof>PLoS computational biology, 2020-12, Vol.16 (12), p.e1008464-e1008464</ispartof><rights>2020 Rivas-Barragan et al 2020 Rivas-Barragan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</citedby><cites>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</cites><orcidid>0000-0002-9858-3755 ; 0000-0003-0163-7890 ; 0000-0002-2046-6145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33264280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivas-Barragan, Daniel</creatorcontrib><creatorcontrib>Mubeen, Sarah</creatorcontrib><creatorcontrib>Guim Bernat, Francesc</creatorcontrib><creatorcontrib>Hofmann-Apitius, Martin</creatorcontrib><creatorcontrib>Domingo-Fernández, Daniel</creatorcontrib><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</description><subject>Algorithms</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Drug Discovery - methods</subject><subject>Drug Repositioning - methods</subject><subject>Drug Therapy</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Neoplasms - drug therapy</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Polypharmacology</subject><subject>Research and Analysis Methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtv1DAQhS0Eohf4B6jyIy-79S12zAMS2tKLVAmE4NkaX5J6m40XO2m1_56E3Vbtk0fjc74ZzUHoEyVLyhU9X6cx99Att87GJSWkFlK8Qce0qvhC8ap--6I-QielrAmZSi3foyPOmRSsJsfo50UeW_YIu_IF_wpQUh_7FqeHkLGDsUCHtzDcFRx7bGPqUhvd1OvD8JjyfcFNythPBOxjcbNr9wG9a6Ar4ePhPUV_Lr__Xl0vbn9c3ay-3S6cUGJYaKErFrgE7gVI24jgQFa6okA4q1VVC9FYXxPvdK28lFYwaJyX1jKtCCh-im72XJ9gbbY5biDvTIJo_jdSbg3kIbouGA0EqHLB2VoJpagNSrqGaWm9Y7qRE-vrnrUd7SZ4F_ohQ_cK-vqnj3emTQ9GTceVal7m8wGQ098xlMFspnuEroM-pLEYJuQkY1zPUrGXupxKyaF5HkOJmYM1h2DNHKw5BDvZzl6u-Gx6SpL_A4l7pIU</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rivas-Barragan, Daniel</creator><creator>Mubeen, Sarah</creator><creator>Guim Bernat, Francesc</creator><creator>Hofmann-Apitius, Martin</creator><creator>Domingo-Fernández, Daniel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9858-3755</orcidid><orcidid>https://orcid.org/0000-0003-0163-7890</orcidid><orcidid>https://orcid.org/0000-0002-2046-6145</orcidid></search><sort><creationdate>20201201</creationdate><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><author>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Drug Discovery - methods</topic><topic>Drug Repositioning - methods</topic><topic>Drug Therapy</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Neoplasms - drug therapy</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Polypharmacology</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivas-Barragan, Daniel</creatorcontrib><creatorcontrib>Mubeen, Sarah</creatorcontrib><creatorcontrib>Guim Bernat, Francesc</creatorcontrib><creatorcontrib>Hofmann-Apitius, Martin</creatorcontrib><creatorcontrib>Domingo-Fernández, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivas-Barragan, Daniel</au><au>Mubeen, Sarah</au><au>Guim Bernat, Francesc</au><au>Hofmann-Apitius, Martin</au><au>Domingo-Fernández, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1008464</spage><epage>e1008464</epage><pages>e1008464-e1008464</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33264280</pmid><doi>10.1371/journal.pcbi.1008464</doi><orcidid>https://orcid.org/0000-0002-9858-3755</orcidid><orcidid>https://orcid.org/0000-0003-0163-7890</orcidid><orcidid>https://orcid.org/0000-0002-2046-6145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2020-12, Vol.16 (12), p.e1008464-e1008464 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_proquest_miscellaneous_2466772397 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Antineoplastic Combined Chemotherapy Protocols - therapeutic use Biology and Life Sciences Computer and Information Sciences Computer Simulation Drug Discovery - methods Drug Repositioning - methods Drug Therapy Humans Medicine and Health Sciences Models, Biological Neoplasms - drug therapy Phenotype Physical Sciences Polypharmacology Research and Analysis Methods |
title | Drug2ways: Reasoning over causal paths in biological networks for drug discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug2ways:%20Reasoning%20over%20causal%20paths%20in%20biological%20networks%20for%20drug%20discovery&rft.jtitle=PLoS%20computational%20biology&rft.au=Rivas-Barragan,%20Daniel&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=e1008464&rft.epage=e1008464&rft.pages=e1008464-e1008464&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008464&rft_dat=%3Cproquest_doaj_%3E2466772397%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466772397&rft_id=info:pmid/33264280&rft_doaj_id=oai_doaj_org_article_9a0a17cecb874771be76cf296bdc29f6&rfr_iscdi=true |