Drug2ways: Reasoning over causal paths in biological networks for drug discovery

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-12, Vol.16 (12), p.e1008464-e1008464
Hauptverfasser: Rivas-Barragan, Daniel, Mubeen, Sarah, Guim Bernat, Francesc, Hofmann-Apitius, Martin, Domingo-Fernández, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008464
container_issue 12
container_start_page e1008464
container_title PLoS computational biology
container_volume 16
creator Rivas-Barragan, Daniel
Mubeen, Sarah
Guim Bernat, Francesc
Hofmann-Apitius, Martin
Domingo-Fernández, Daniel
description Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.
doi_str_mv 10.1371/journal.pcbi.1008464
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466772397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9a0a17cecb874771be76cf296bdc29f6</doaj_id><sourcerecordid>2466772397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhS0Eohf4B6jyIy-79S12zAMS2tKLVAmE4NkaX5J6m40XO2m1_56E3Vbtk0fjc74ZzUHoEyVLyhU9X6cx99Att87GJSWkFlK8Qce0qvhC8ap--6I-QielrAmZSi3foyPOmRSsJsfo50UeW_YIu_IF_wpQUh_7FqeHkLGDsUCHtzDcFRx7bGPqUhvd1OvD8JjyfcFNythPBOxjcbNr9wG9a6Ar4ePhPUV_Lr__Xl0vbn9c3ay-3S6cUGJYaKErFrgE7gVI24jgQFa6okA4q1VVC9FYXxPvdK28lFYwaJyX1jKtCCh-im72XJ9gbbY5biDvTIJo_jdSbg3kIbouGA0EqHLB2VoJpagNSrqGaWm9Y7qRE-vrnrUd7SZ4F_ohQ_cK-vqnj3emTQ9GTceVal7m8wGQ098xlMFspnuEroM-pLEYJuQkY1zPUrGXupxKyaF5HkOJmYM1h2DNHKw5BDvZzl6u-Gx6SpL_A4l7pIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466772397</pqid></control><display><type>article</type><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</creator><creatorcontrib>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</creatorcontrib><description>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008464</identifier><identifier>PMID: 33264280</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biology and Life Sciences ; Computer and Information Sciences ; Computer Simulation ; Drug Discovery - methods ; Drug Repositioning - methods ; Drug Therapy ; Humans ; Medicine and Health Sciences ; Models, Biological ; Neoplasms - drug therapy ; Phenotype ; Physical Sciences ; Polypharmacology ; Research and Analysis Methods</subject><ispartof>PLoS computational biology, 2020-12, Vol.16 (12), p.e1008464-e1008464</ispartof><rights>2020 Rivas-Barragan et al 2020 Rivas-Barragan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</citedby><cites>FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</cites><orcidid>0000-0002-9858-3755 ; 0000-0003-0163-7890 ; 0000-0002-2046-6145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735677/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735677/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33264280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivas-Barragan, Daniel</creatorcontrib><creatorcontrib>Mubeen, Sarah</creatorcontrib><creatorcontrib>Guim Bernat, Francesc</creatorcontrib><creatorcontrib>Hofmann-Apitius, Martin</creatorcontrib><creatorcontrib>Domingo-Fernández, Daniel</creatorcontrib><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</description><subject>Algorithms</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Drug Discovery - methods</subject><subject>Drug Repositioning - methods</subject><subject>Drug Therapy</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Neoplasms - drug therapy</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Polypharmacology</subject><subject>Research and Analysis Methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtv1DAQhS0Eohf4B6jyIy-79S12zAMS2tKLVAmE4NkaX5J6m40XO2m1_56E3Vbtk0fjc74ZzUHoEyVLyhU9X6cx99Att87GJSWkFlK8Qce0qvhC8ap--6I-QielrAmZSi3foyPOmRSsJsfo50UeW_YIu_IF_wpQUh_7FqeHkLGDsUCHtzDcFRx7bGPqUhvd1OvD8JjyfcFNythPBOxjcbNr9wG9a6Ar4ePhPUV_Lr__Xl0vbn9c3ay-3S6cUGJYaKErFrgE7gVI24jgQFa6okA4q1VVC9FYXxPvdK28lFYwaJyX1jKtCCh-im72XJ9gbbY5biDvTIJo_jdSbg3kIbouGA0EqHLB2VoJpagNSrqGaWm9Y7qRE-vrnrUd7SZ4F_ohQ_cK-vqnj3emTQ9GTceVal7m8wGQ098xlMFspnuEroM-pLEYJuQkY1zPUrGXupxKyaF5HkOJmYM1h2DNHKw5BDvZzl6u-Gx6SpL_A4l7pIU</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Rivas-Barragan, Daniel</creator><creator>Mubeen, Sarah</creator><creator>Guim Bernat, Francesc</creator><creator>Hofmann-Apitius, Martin</creator><creator>Domingo-Fernández, Daniel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9858-3755</orcidid><orcidid>https://orcid.org/0000-0003-0163-7890</orcidid><orcidid>https://orcid.org/0000-0002-2046-6145</orcidid></search><sort><creationdate>20201201</creationdate><title>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</title><author>Rivas-Barragan, Daniel ; Mubeen, Sarah ; Guim Bernat, Francesc ; Hofmann-Apitius, Martin ; Domingo-Fernández, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-94952e36a3d4a6bf4eca65951a032875844fbd80dc987d66b42afcd6bb2970a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Drug Discovery - methods</topic><topic>Drug Repositioning - methods</topic><topic>Drug Therapy</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Neoplasms - drug therapy</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Polypharmacology</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivas-Barragan, Daniel</creatorcontrib><creatorcontrib>Mubeen, Sarah</creatorcontrib><creatorcontrib>Guim Bernat, Francesc</creatorcontrib><creatorcontrib>Hofmann-Apitius, Martin</creatorcontrib><creatorcontrib>Domingo-Fernández, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivas-Barragan, Daniel</au><au>Mubeen, Sarah</au><au>Guim Bernat, Francesc</au><au>Hofmann-Apitius, Martin</au><au>Domingo-Fernández, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug2ways: Reasoning over causal paths in biological networks for drug discovery</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1008464</spage><epage>e1008464</epage><pages>e1008464-e1008464</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33264280</pmid><doi>10.1371/journal.pcbi.1008464</doi><orcidid>https://orcid.org/0000-0002-9858-3755</orcidid><orcidid>https://orcid.org/0000-0003-0163-7890</orcidid><orcidid>https://orcid.org/0000-0002-2046-6145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2020-12, Vol.16 (12), p.e1008464-e1008464
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_proquest_miscellaneous_2466772397
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Biology and Life Sciences
Computer and Information Sciences
Computer Simulation
Drug Discovery - methods
Drug Repositioning - methods
Drug Therapy
Humans
Medicine and Health Sciences
Models, Biological
Neoplasms - drug therapy
Phenotype
Physical Sciences
Polypharmacology
Research and Analysis Methods
title Drug2ways: Reasoning over causal paths in biological networks for drug discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug2ways:%20Reasoning%20over%20causal%20paths%20in%20biological%20networks%20for%20drug%20discovery&rft.jtitle=PLoS%20computational%20biology&rft.au=Rivas-Barragan,%20Daniel&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=e1008464&rft.epage=e1008464&rft.pages=e1008464-e1008464&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008464&rft_dat=%3Cproquest_doaj_%3E2466772397%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466772397&rft_id=info:pmid/33264280&rft_doaj_id=oai_doaj_org_article_9a0a17cecb874771be76cf296bdc29f6&rfr_iscdi=true