Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study

Due to its huge capacity, Si is a promising anode material for practical applications in lithium-ion batteries. Here, using first-principles calculations, we study the applicability of the amorphous Si anode in multivalent-ion batteries, which are of great interest as candidates for post-lithium-ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (50), p.55746-55755
Hauptverfasser: Lee, Sangjin, Ko, Minseong, Jung, Sung Chul, Han, Young-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55755
container_issue 50
container_start_page 55746
container_title ACS applied materials & interfaces
container_volume 12
creator Lee, Sangjin
Ko, Minseong
Jung, Sung Chul
Han, Young-Kyu
description Due to its huge capacity, Si is a promising anode material for practical applications in lithium-ion batteries. Here, using first-principles calculations, we study the applicability of the amorphous Si anode in multivalent-ion batteries, which are of great interest as candidates for post-lithium-ion batteries. Of the multivalent Mg2+, Ca2+, Zn2+, and Al3+ ions, only Mg2+ and Ca2+ are able to form Mg2.3Si and Ca2.5Si by alloying with Si, delivering very high capacities of 4390 and 4771 mA h g–1, respectively. Mg2.3Si has an 8% smaller capacity than Ca2.5Si, but its volume expansion ratio and ion diffusivity are ∼200% smaller and 3 orders of magnitude higher than those of Ca2.5Si, respectively. The capacity, volume expansion, and ion diffusion of Mg2.3Si are excellently high, moderately small, and fairly fast, respectively, when compared to those of Li3.7Si, Na0.75Si, and K1.1Si. The high performance of Mg2.3Si can be understood in terms of the coordination numbers of Si and the atomic size of Mg. This work suggests that, as a carrier ion for the amorphous Si anode, Mg2+ is the most competitive among the multivalent ions and is at least as good as monovalent ions.
doi_str_mv 10.1021/acsami.0c13312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466770799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466770799</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-ab5b69a4ce26ffb929fe0a6c2a6dd8f2d72ac6c2fcf48d35a1391d199a8f438f3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQxhdRbH1cPcoeRUjdR17rrVarhRaF6tUw2QduSZO6uxH635uS2punmWF-38fMh9AVJSNKGL0D6WFtR0RSzik7QkMq4jjKWcKOD30cD9CZ9ytCUs5IcooGnLOUiywfos-lraxsagwehy-Nx3WjNF5A0M5ChU3j8KKtgv2BStchmnXkA4TdVvt7PMZT63yI3pytpd1U2uPHbd0dJD1ehlZtL9CJgcrry309Rx_Tp_fJSzR_fZ5NxvMIOCchgjIpUwGx1Cw1phRMGE0glQxSpXLDVMZAdqORJs4VT4ByQRUVAnIT89zwc3TT-25c891qH4q19VJXFdS6aX3B4jTNMpIJ0aGjHpWu8d5pU2ycXYPbFpQUu0yLPtNin2knuN57t-VaqwP-F2IH3PZAJyxWTevq7tX_3H4BqcGCKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466770799</pqid></control><display><type>article</type><title>Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study</title><source>American Chemical Society Journals</source><creator>Lee, Sangjin ; Ko, Minseong ; Jung, Sung Chul ; Han, Young-Kyu</creator><creatorcontrib>Lee, Sangjin ; Ko, Minseong ; Jung, Sung Chul ; Han, Young-Kyu</creatorcontrib><description>Due to its huge capacity, Si is a promising anode material for practical applications in lithium-ion batteries. Here, using first-principles calculations, we study the applicability of the amorphous Si anode in multivalent-ion batteries, which are of great interest as candidates for post-lithium-ion batteries. Of the multivalent Mg2+, Ca2+, Zn2+, and Al3+ ions, only Mg2+ and Ca2+ are able to form Mg2.3Si and Ca2.5Si by alloying with Si, delivering very high capacities of 4390 and 4771 mA h g–1, respectively. Mg2.3Si has an 8% smaller capacity than Ca2.5Si, but its volume expansion ratio and ion diffusivity are ∼200% smaller and 3 orders of magnitude higher than those of Ca2.5Si, respectively. The capacity, volume expansion, and ion diffusion of Mg2.3Si are excellently high, moderately small, and fairly fast, respectively, when compared to those of Li3.7Si, Na0.75Si, and K1.1Si. The high performance of Mg2.3Si can be understood in terms of the coordination numbers of Si and the atomic size of Mg. This work suggests that, as a carrier ion for the amorphous Si anode, Mg2+ is the most competitive among the multivalent ions and is at least as good as monovalent ions.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c13312</identifier><identifier>PMID: 33263978</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-12, Vol.12 (50), p.55746-55755</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-ab5b69a4ce26ffb929fe0a6c2a6dd8f2d72ac6c2fcf48d35a1391d199a8f438f3</citedby><cites>FETCH-LOGICAL-a330t-ab5b69a4ce26ffb929fe0a6c2a6dd8f2d72ac6c2fcf48d35a1391d199a8f438f3</cites><orcidid>0000-0003-3274-9545 ; 0000-0001-6906-4182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c13312$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c13312$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33263978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sangjin</creatorcontrib><creatorcontrib>Ko, Minseong</creatorcontrib><creatorcontrib>Jung, Sung Chul</creatorcontrib><creatorcontrib>Han, Young-Kyu</creatorcontrib><title>Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Due to its huge capacity, Si is a promising anode material for practical applications in lithium-ion batteries. Here, using first-principles calculations, we study the applicability of the amorphous Si anode in multivalent-ion batteries, which are of great interest as candidates for post-lithium-ion batteries. Of the multivalent Mg2+, Ca2+, Zn2+, and Al3+ ions, only Mg2+ and Ca2+ are able to form Mg2.3Si and Ca2.5Si by alloying with Si, delivering very high capacities of 4390 and 4771 mA h g–1, respectively. Mg2.3Si has an 8% smaller capacity than Ca2.5Si, but its volume expansion ratio and ion diffusivity are ∼200% smaller and 3 orders of magnitude higher than those of Ca2.5Si, respectively. The capacity, volume expansion, and ion diffusion of Mg2.3Si are excellently high, moderately small, and fairly fast, respectively, when compared to those of Li3.7Si, Na0.75Si, and K1.1Si. The high performance of Mg2.3Si can be understood in terms of the coordination numbers of Si and the atomic size of Mg. This work suggests that, as a carrier ion for the amorphous Si anode, Mg2+ is the most competitive among the multivalent ions and is at least as good as monovalent ions.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQxhdRbH1cPcoeRUjdR17rrVarhRaF6tUw2QduSZO6uxH635uS2punmWF-38fMh9AVJSNKGL0D6WFtR0RSzik7QkMq4jjKWcKOD30cD9CZ9ytCUs5IcooGnLOUiywfos-lraxsagwehy-Nx3WjNF5A0M5ChU3j8KKtgv2BStchmnXkA4TdVvt7PMZT63yI3pytpd1U2uPHbd0dJD1ehlZtL9CJgcrry309Rx_Tp_fJSzR_fZ5NxvMIOCchgjIpUwGx1Cw1phRMGE0glQxSpXLDVMZAdqORJs4VT4ByQRUVAnIT89zwc3TT-25c891qH4q19VJXFdS6aX3B4jTNMpIJ0aGjHpWu8d5pU2ycXYPbFpQUu0yLPtNin2knuN57t-VaqwP-F2IH3PZAJyxWTevq7tX_3H4BqcGCKA</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Lee, Sangjin</creator><creator>Ko, Minseong</creator><creator>Jung, Sung Chul</creator><creator>Han, Young-Kyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3274-9545</orcidid><orcidid>https://orcid.org/0000-0001-6906-4182</orcidid></search><sort><creationdate>20201216</creationdate><title>Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study</title><author>Lee, Sangjin ; Ko, Minseong ; Jung, Sung Chul ; Han, Young-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-ab5b69a4ce26ffb929fe0a6c2a6dd8f2d72ac6c2fcf48d35a1391d199a8f438f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangjin</creatorcontrib><creatorcontrib>Ko, Minseong</creatorcontrib><creatorcontrib>Jung, Sung Chul</creatorcontrib><creatorcontrib>Han, Young-Kyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangjin</au><au>Ko, Minseong</au><au>Jung, Sung Chul</au><au>Han, Young-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>12</volume><issue>50</issue><spage>55746</spage><epage>55755</epage><pages>55746-55755</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Due to its huge capacity, Si is a promising anode material for practical applications in lithium-ion batteries. Here, using first-principles calculations, we study the applicability of the amorphous Si anode in multivalent-ion batteries, which are of great interest as candidates for post-lithium-ion batteries. Of the multivalent Mg2+, Ca2+, Zn2+, and Al3+ ions, only Mg2+ and Ca2+ are able to form Mg2.3Si and Ca2.5Si by alloying with Si, delivering very high capacities of 4390 and 4771 mA h g–1, respectively. Mg2.3Si has an 8% smaller capacity than Ca2.5Si, but its volume expansion ratio and ion diffusivity are ∼200% smaller and 3 orders of magnitude higher than those of Ca2.5Si, respectively. The capacity, volume expansion, and ion diffusion of Mg2.3Si are excellently high, moderately small, and fairly fast, respectively, when compared to those of Li3.7Si, Na0.75Si, and K1.1Si. The high performance of Mg2.3Si can be understood in terms of the coordination numbers of Si and the atomic size of Mg. This work suggests that, as a carrier ion for the amorphous Si anode, Mg2+ is the most competitive among the multivalent ions and is at least as good as monovalent ions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33263978</pmid><doi>10.1021/acsami.0c13312</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3274-9545</orcidid><orcidid>https://orcid.org/0000-0001-6906-4182</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-12, Vol.12 (50), p.55746-55755
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2466770799
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20as%20the%20Anode%20Material%20for%20Multivalent-Ion%20Batteries:%20A%20First-Principles%20Dynamics%20Study&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Sangjin&rft.date=2020-12-16&rft.volume=12&rft.issue=50&rft.spage=55746&rft.epage=55755&rft.pages=55746-55755&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c13312&rft_dat=%3Cproquest_cross%3E2466770799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466770799&rft_id=info:pmid/33263978&rfr_iscdi=true