Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi
With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fun...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-12, Vol.117 (51), p.32528-32534 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32534 |
---|---|
container_issue | 51 |
container_start_page | 32528 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Sánchez-García, Marisol Ryberg, Martin Khan, Faheema Kalsoom Varga, Torda Nagy, László G. Hibbett, David S. |
description | With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales. |
doi_str_mv | 10.1073/pnas.1922539117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466041056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27005823</jstor_id><sourcerecordid>27005823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</originalsourceid><addsrcrecordid>eNp1ks1v1DAQxS0EosvCmRPIEhcOm62_7VwqVYUCUiUuwNVyEmfXUWIvdlzU_x6HLQtF4jSW5veePDMPgJcYbTGS9PzgTdrimhBOa4zlI7DCqMaVYDV6DFYIEVkpRtgZeJbSgBCquUJPwRmlhEsu2QoM1zG72fkdbEJ3B_sQpw30YYY-z7E0gjcjnEJnN9AlOO8tnMwQIuyiu7URhh52yyO53rVmwaHzcMppH0OYqsVu8e6z37nn4ElvxmRf3Nc1-Hr9_svVx-rm84dPV5c3VctxPVfMMCZIRznuamFUjwhllpOmNoQ0ZUwqMaVWSNW2TBLcK8trKZnqrOhl0zZ0DbZH3_TDHnKjD9FNJt7pYJxOY25MXIpOVpddKamKYPNfwTv37VKHuNM5a0YpIgt-ccQLO9mutX6OZnygetjxbq934VZLKZQsl1qDt_cGMXzPNs16cqm142i8DTlpwoRADCMuCvrmH3QIOZabLJQkQhD2y_D8SLUxpBRtf_oMRnrJiV5yov_kpChe_z3Dif8djAK8OgJDmkM89YlEiCtC6U-CWMUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472662425</pqid></control><display><type>article</type><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S.</creator><creatorcontrib>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S. ; Sveriges lantbruksuniversitet</creatorcontrib><description>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922539117</identifier><identifier>PMID: 33257574</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agaricomycetes ; Basidiomycota - genetics ; Basidiomycota - physiology ; Biodiversity ; Biological Sciences ; Diversification ; Ecology ; ectomycorrhizal fungi ; Ectomycorrhizas ; Ekologi ; Evolution ; Fruit bodies ; Fruiting Bodies, Fungal - genetics ; Fruiting Bodies, Fungal - physiology ; Fungi ; gasteroid forms ; megaphylogeny ; Microbiology ; Mikrobiologi ; Morphology ; Mushrooms ; Mycorrhizae - physiology ; Parasitism ; Phylogeny ; Species ; Symbiosis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (51), p.32528-32534</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 22, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</citedby><cites>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</cites><orcidid>0000-0002-4891-953X ; 0000-0002-4102-8566 ; 0000-0002-9145-3165 ; 0000-0002-2597-9126 ; 0000-0002-0635-6281 ; 0000-0002-6795-4349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27005823$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27005823$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,551,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33257574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-433028$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/109878$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-García, Marisol</creatorcontrib><creatorcontrib>Ryberg, Martin</creatorcontrib><creatorcontrib>Khan, Faheema Kalsoom</creatorcontrib><creatorcontrib>Varga, Torda</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</description><subject>Agaricomycetes</subject><subject>Basidiomycota - genetics</subject><subject>Basidiomycota - physiology</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Diversification</subject><subject>Ecology</subject><subject>ectomycorrhizal fungi</subject><subject>Ectomycorrhizas</subject><subject>Ekologi</subject><subject>Evolution</subject><subject>Fruit bodies</subject><subject>Fruiting Bodies, Fungal - genetics</subject><subject>Fruiting Bodies, Fungal - physiology</subject><subject>Fungi</subject><subject>gasteroid forms</subject><subject>megaphylogeny</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Morphology</subject><subject>Mushrooms</subject><subject>Mycorrhizae - physiology</subject><subject>Parasitism</subject><subject>Phylogeny</subject><subject>Species</subject><subject>Symbiosis</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1ks1v1DAQxS0EosvCmRPIEhcOm62_7VwqVYUCUiUuwNVyEmfXUWIvdlzU_x6HLQtF4jSW5veePDMPgJcYbTGS9PzgTdrimhBOa4zlI7DCqMaVYDV6DFYIEVkpRtgZeJbSgBCquUJPwRmlhEsu2QoM1zG72fkdbEJ3B_sQpw30YYY-z7E0gjcjnEJnN9AlOO8tnMwQIuyiu7URhh52yyO53rVmwaHzcMppH0OYqsVu8e6z37nn4ElvxmRf3Nc1-Hr9_svVx-rm84dPV5c3VctxPVfMMCZIRznuamFUjwhllpOmNoQ0ZUwqMaVWSNW2TBLcK8trKZnqrOhl0zZ0DbZH3_TDHnKjD9FNJt7pYJxOY25MXIpOVpddKamKYPNfwTv37VKHuNM5a0YpIgt-ccQLO9mutX6OZnygetjxbq934VZLKZQsl1qDt_cGMXzPNs16cqm142i8DTlpwoRADCMuCvrmH3QIOZabLJQkQhD2y_D8SLUxpBRtf_oMRnrJiV5yov_kpChe_z3Dif8djAK8OgJDmkM89YlEiCtC6U-CWMUA</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Sánchez-García, Marisol</creator><creator>Ryberg, Martin</creator><creator>Khan, Faheema Kalsoom</creator><creator>Varga, Torda</creator><creator>Nagy, László G.</creator><creator>Hibbett, David S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4891-953X</orcidid><orcidid>https://orcid.org/0000-0002-4102-8566</orcidid><orcidid>https://orcid.org/0000-0002-9145-3165</orcidid><orcidid>https://orcid.org/0000-0002-2597-9126</orcidid><orcidid>https://orcid.org/0000-0002-0635-6281</orcidid><orcidid>https://orcid.org/0000-0002-6795-4349</orcidid></search><sort><creationdate>20201222</creationdate><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><author>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agaricomycetes</topic><topic>Basidiomycota - genetics</topic><topic>Basidiomycota - physiology</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Diversification</topic><topic>Ecology</topic><topic>ectomycorrhizal fungi</topic><topic>Ectomycorrhizas</topic><topic>Ekologi</topic><topic>Evolution</topic><topic>Fruit bodies</topic><topic>Fruiting Bodies, Fungal - genetics</topic><topic>Fruiting Bodies, Fungal - physiology</topic><topic>Fungi</topic><topic>gasteroid forms</topic><topic>megaphylogeny</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Morphology</topic><topic>Mushrooms</topic><topic>Mycorrhizae - physiology</topic><topic>Parasitism</topic><topic>Phylogeny</topic><topic>Species</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-García, Marisol</creatorcontrib><creatorcontrib>Ryberg, Martin</creatorcontrib><creatorcontrib>Khan, Faheema Kalsoom</creatorcontrib><creatorcontrib>Varga, Torda</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-García, Marisol</au><au>Ryberg, Martin</au><au>Khan, Faheema Kalsoom</au><au>Varga, Torda</au><au>Nagy, László G.</au><au>Hibbett, David S.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>117</volume><issue>51</issue><spage>32528</spage><epage>32534</epage><pages>32528-32534</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33257574</pmid><doi>10.1073/pnas.1922539117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4891-953X</orcidid><orcidid>https://orcid.org/0000-0002-4102-8566</orcidid><orcidid>https://orcid.org/0000-0002-9145-3165</orcidid><orcidid>https://orcid.org/0000-0002-2597-9126</orcidid><orcidid>https://orcid.org/0000-0002-0635-6281</orcidid><orcidid>https://orcid.org/0000-0002-6795-4349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (51), p.32528-32534 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_2466041056 |
source | MEDLINE; SWEPUB Freely available online; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agaricomycetes Basidiomycota - genetics Basidiomycota - physiology Biodiversity Biological Sciences Diversification Ecology ectomycorrhizal fungi Ectomycorrhizas Ekologi Evolution Fruit bodies Fruiting Bodies, Fungal - genetics Fruiting Bodies, Fungal - physiology Fungi gasteroid forms megaphylogeny Microbiology Mikrobiologi Morphology Mushrooms Mycorrhizae - physiology Parasitism Phylogeny Species Symbiosis |
title | Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fruiting%20body%20form,%20not%20nutritional%20mode,%20is%20the%20major%20driver%20of%20diversification%20in%20mushroom-forming%20fungi&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=S%C3%A1nchez-Garc%C3%ADa,%20Marisol&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-12-22&rft.volume=117&rft.issue=51&rft.spage=32528&rft.epage=32534&rft.pages=32528-32534&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922539117&rft_dat=%3Cjstor_swepu%3E27005823%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472662425&rft_id=info:pmid/33257574&rft_jstor_id=27005823&rfr_iscdi=true |