Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi

With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-12, Vol.117 (51), p.32528-32534
Hauptverfasser: Sánchez-García, Marisol, Ryberg, Martin, Khan, Faheema Kalsoom, Varga, Torda, Nagy, László G., Hibbett, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32534
container_issue 51
container_start_page 32528
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Sánchez-García, Marisol
Ryberg, Martin
Khan, Faheema Kalsoom
Varga, Torda
Nagy, László G.
Hibbett, David S.
description With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.
doi_str_mv 10.1073/pnas.1922539117
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466041056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27005823</jstor_id><sourcerecordid>27005823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</originalsourceid><addsrcrecordid>eNp1ks1v1DAQxS0EosvCmRPIEhcOm62_7VwqVYUCUiUuwNVyEmfXUWIvdlzU_x6HLQtF4jSW5veePDMPgJcYbTGS9PzgTdrimhBOa4zlI7DCqMaVYDV6DFYIEVkpRtgZeJbSgBCquUJPwRmlhEsu2QoM1zG72fkdbEJ3B_sQpw30YYY-z7E0gjcjnEJnN9AlOO8tnMwQIuyiu7URhh52yyO53rVmwaHzcMppH0OYqsVu8e6z37nn4ElvxmRf3Nc1-Hr9_svVx-rm84dPV5c3VctxPVfMMCZIRznuamFUjwhllpOmNoQ0ZUwqMaVWSNW2TBLcK8trKZnqrOhl0zZ0DbZH3_TDHnKjD9FNJt7pYJxOY25MXIpOVpddKamKYPNfwTv37VKHuNM5a0YpIgt-ccQLO9mutX6OZnygetjxbq934VZLKZQsl1qDt_cGMXzPNs16cqm142i8DTlpwoRADCMuCvrmH3QIOZabLJQkQhD2y_D8SLUxpBRtf_oMRnrJiV5yov_kpChe_z3Dif8djAK8OgJDmkM89YlEiCtC6U-CWMUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472662425</pqid></control><display><type>article</type><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S.</creator><creatorcontrib>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S. ; Sveriges lantbruksuniversitet</creatorcontrib><description>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1922539117</identifier><identifier>PMID: 33257574</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agaricomycetes ; Basidiomycota - genetics ; Basidiomycota - physiology ; Biodiversity ; Biological Sciences ; Diversification ; Ecology ; ectomycorrhizal fungi ; Ectomycorrhizas ; Ekologi ; Evolution ; Fruit bodies ; Fruiting Bodies, Fungal - genetics ; Fruiting Bodies, Fungal - physiology ; Fungi ; gasteroid forms ; megaphylogeny ; Microbiology ; Mikrobiologi ; Morphology ; Mushrooms ; Mycorrhizae - physiology ; Parasitism ; Phylogeny ; Species ; Symbiosis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (51), p.32528-32534</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 22, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</citedby><cites>FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</cites><orcidid>0000-0002-4891-953X ; 0000-0002-4102-8566 ; 0000-0002-9145-3165 ; 0000-0002-2597-9126 ; 0000-0002-0635-6281 ; 0000-0002-6795-4349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27005823$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27005823$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,551,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33257574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-433028$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/109878$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-García, Marisol</creatorcontrib><creatorcontrib>Ryberg, Martin</creatorcontrib><creatorcontrib>Khan, Faheema Kalsoom</creatorcontrib><creatorcontrib>Varga, Torda</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</description><subject>Agaricomycetes</subject><subject>Basidiomycota - genetics</subject><subject>Basidiomycota - physiology</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Diversification</subject><subject>Ecology</subject><subject>ectomycorrhizal fungi</subject><subject>Ectomycorrhizas</subject><subject>Ekologi</subject><subject>Evolution</subject><subject>Fruit bodies</subject><subject>Fruiting Bodies, Fungal - genetics</subject><subject>Fruiting Bodies, Fungal - physiology</subject><subject>Fungi</subject><subject>gasteroid forms</subject><subject>megaphylogeny</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Morphology</subject><subject>Mushrooms</subject><subject>Mycorrhizae - physiology</subject><subject>Parasitism</subject><subject>Phylogeny</subject><subject>Species</subject><subject>Symbiosis</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1ks1v1DAQxS0EosvCmRPIEhcOm62_7VwqVYUCUiUuwNVyEmfXUWIvdlzU_x6HLQtF4jSW5veePDMPgJcYbTGS9PzgTdrimhBOa4zlI7DCqMaVYDV6DFYIEVkpRtgZeJbSgBCquUJPwRmlhEsu2QoM1zG72fkdbEJ3B_sQpw30YYY-z7E0gjcjnEJnN9AlOO8tnMwQIuyiu7URhh52yyO53rVmwaHzcMppH0OYqsVu8e6z37nn4ElvxmRf3Nc1-Hr9_svVx-rm84dPV5c3VctxPVfMMCZIRznuamFUjwhllpOmNoQ0ZUwqMaVWSNW2TBLcK8trKZnqrOhl0zZ0DbZH3_TDHnKjD9FNJt7pYJxOY25MXIpOVpddKamKYPNfwTv37VKHuNM5a0YpIgt-ccQLO9mutX6OZnygetjxbq934VZLKZQsl1qDt_cGMXzPNs16cqm142i8DTlpwoRADCMuCvrmH3QIOZabLJQkQhD2y_D8SLUxpBRtf_oMRnrJiV5yov_kpChe_z3Dif8djAK8OgJDmkM89YlEiCtC6U-CWMUA</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Sánchez-García, Marisol</creator><creator>Ryberg, Martin</creator><creator>Khan, Faheema Kalsoom</creator><creator>Varga, Torda</creator><creator>Nagy, László G.</creator><creator>Hibbett, David S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4891-953X</orcidid><orcidid>https://orcid.org/0000-0002-4102-8566</orcidid><orcidid>https://orcid.org/0000-0002-9145-3165</orcidid><orcidid>https://orcid.org/0000-0002-2597-9126</orcidid><orcidid>https://orcid.org/0000-0002-0635-6281</orcidid><orcidid>https://orcid.org/0000-0002-6795-4349</orcidid></search><sort><creationdate>20201222</creationdate><title>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</title><author>Sánchez-García, Marisol ; Ryberg, Martin ; Khan, Faheema Kalsoom ; Varga, Torda ; Nagy, László G. ; Hibbett, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-4a4462d351d96a8f0234e52b9a22b53937133e678cc4721f8e597748de6f7bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agaricomycetes</topic><topic>Basidiomycota - genetics</topic><topic>Basidiomycota - physiology</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Diversification</topic><topic>Ecology</topic><topic>ectomycorrhizal fungi</topic><topic>Ectomycorrhizas</topic><topic>Ekologi</topic><topic>Evolution</topic><topic>Fruit bodies</topic><topic>Fruiting Bodies, Fungal - genetics</topic><topic>Fruiting Bodies, Fungal - physiology</topic><topic>Fungi</topic><topic>gasteroid forms</topic><topic>megaphylogeny</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Morphology</topic><topic>Mushrooms</topic><topic>Mycorrhizae - physiology</topic><topic>Parasitism</topic><topic>Phylogeny</topic><topic>Species</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-García, Marisol</creatorcontrib><creatorcontrib>Ryberg, Martin</creatorcontrib><creatorcontrib>Khan, Faheema Kalsoom</creatorcontrib><creatorcontrib>Varga, Torda</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David S.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-García, Marisol</au><au>Ryberg, Martin</au><au>Khan, Faheema Kalsoom</au><au>Varga, Torda</au><au>Nagy, László G.</au><au>Hibbett, David S.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>117</volume><issue>51</issue><spage>32528</spage><epage>32534</epage><pages>32528-32534</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECMsister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33257574</pmid><doi>10.1073/pnas.1922539117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4891-953X</orcidid><orcidid>https://orcid.org/0000-0002-4102-8566</orcidid><orcidid>https://orcid.org/0000-0002-9145-3165</orcidid><orcidid>https://orcid.org/0000-0002-2597-9126</orcidid><orcidid>https://orcid.org/0000-0002-0635-6281</orcidid><orcidid>https://orcid.org/0000-0002-6795-4349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (51), p.32528-32534
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_proquest_miscellaneous_2466041056
source MEDLINE; SWEPUB Freely available online; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agaricomycetes
Basidiomycota - genetics
Basidiomycota - physiology
Biodiversity
Biological Sciences
Diversification
Ecology
ectomycorrhizal fungi
Ectomycorrhizas
Ekologi
Evolution
Fruit bodies
Fruiting Bodies, Fungal - genetics
Fruiting Bodies, Fungal - physiology
Fungi
gasteroid forms
megaphylogeny
Microbiology
Mikrobiologi
Morphology
Mushrooms
Mycorrhizae - physiology
Parasitism
Phylogeny
Species
Symbiosis
title Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fruiting%20body%20form,%20not%20nutritional%20mode,%20is%20the%20major%20driver%20of%20diversification%20in%20mushroom-forming%20fungi&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=S%C3%A1nchez-Garc%C3%ADa,%20Marisol&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-12-22&rft.volume=117&rft.issue=51&rft.spage=32528&rft.epage=32534&rft.pages=32528-32534&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1922539117&rft_dat=%3Cjstor_swepu%3E27005823%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472662425&rft_id=info:pmid/33257574&rft_jstor_id=27005823&rfr_iscdi=true