Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet
Pomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mit...
Gespeichert in:
Veröffentlicht in: | British journal of nutrition 2021-09, Vol.126 (6), p.825-836 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | 6 |
container_start_page | 825 |
container_title | British journal of nutrition |
container_volume | 126 |
creator | Echeverria, Francisca Jimenez Patino, Paula Andrea Castro-Sepulveda, Mauricio Bustamante, Andres Garcia Concha, Paula Andrea Poblete-Aro, Carlos Valenzuela, Rodrigo Garcia-Diaz, Diego F. |
description | Pomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mitochondrial biogenesis and function have also been described. However, once phenolic compounds are extracted, their stability can be affected by diverse factors. Microencapsulation could improve PPE stability, allowing its incorporation into functional foods. Nevertheless, studies on the potential biological effects of PPE microparticles (MPPE) in obesity models are lacking. This study aims to evaluate the effect of MPPE on brown adipose tissue (BAT) mitochondrial structure and function and metabolic alterations related to obesity in mice fed a high-fat diet (HFD). PPE was microencapsulated by spray drying using inulin (IN) as a wall material and physically–chemically characterised. Eight-week-old male C57BL/6J mice (n 40) were randomly distributed into five groups: control diet (CD), HFD, HFD + IN, HFD + PPE (50 mg/kg per d TP) and HFD + MPPE (50 mg/kg per d TP), for 14 weeks. A glucose tolerance test and indirect calorimetry were conducted. Blood and adipose tissue samples were obtained. MPPE supplementation prevented HFD-induced body weight gain (P < 0·001), fasting glycaemia (P = 0·007) and total cholesterol rise (P = 0·001). MPPE resulted in higher BAT mitochondrial complex IV activity (P = 0·03) and prevented HFD-induced mitochondrial cristae alteration (P = 0·02). In conclusion, MPPE prevented HFD-induced excessive body weight gain and associated metabolic disturbances, potentially by activating complex IV activity and preserving mitochondrial cristae structure in BAT in mice fed with a HFD. |
doi_str_mv | 10.1017/S000711452000481X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2466034672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000711452000481X</cupid><sourcerecordid>2466034672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-be7997a3a1307b2b692930554314767ef278225cabbd39e9bf86b39ba204ba0d3</originalsourceid><addsrcrecordid>eNp1kc1u1DAQgC0EokvhAbggS1x6CfVPHCdHVFGoVNQDP-IWjZ3JrqvEDrZT2kfj7fCqC0hUnOzxfPN5NEPIS87ecMb16SfGmOa8VqJc6pZ_e0Q2vNaqEk0jHpPNPl3t80fkWUrXJWw5656SIymFalrVbsjPj87GgN7CktYJMg50CTNuI_gS0AVxonibI9hMnR9Wi4nOLge7C36IDiZqw7xMeEsvvtICuRuX7yj4ool4gz4_wKNLGZDClDFCdsEXLzUx_PAUBreEhDS7lFbcv8_OIh1LUwUDunPbXTVCpoPD_Jw8GWFK-OJwHpMv5-8-n32oLq_eX5y9vays1DJXBnXXaZDAJdNGmKYTnWRK1bJMqtE4Ct0KoSwYM8gOOzO2jZGdAcFqA2yQx-Tk3rvE8H3FlPvZJYvTBB7DmnpRNw2TdaNFQV__g16HNfrSXS-U6mTb1ooVit9TZfApRRz7JboZ4l3PWb_fa_9gr6Xm1cG8mhmHPxW_F1kAeZDCbKIbtvj37_9rfwFekbCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559388450</pqid></control><display><type>article</type><title>Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Echeverria, Francisca ; Jimenez Patino, Paula Andrea ; Castro-Sepulveda, Mauricio ; Bustamante, Andres ; Garcia Concha, Paula Andrea ; Poblete-Aro, Carlos ; Valenzuela, Rodrigo ; Garcia-Diaz, Diego F.</creator><creatorcontrib>Echeverria, Francisca ; Jimenez Patino, Paula Andrea ; Castro-Sepulveda, Mauricio ; Bustamante, Andres ; Garcia Concha, Paula Andrea ; Poblete-Aro, Carlos ; Valenzuela, Rodrigo ; Garcia-Diaz, Diego F.</creatorcontrib><description>Pomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mitochondrial biogenesis and function have also been described. However, once phenolic compounds are extracted, their stability can be affected by diverse factors. Microencapsulation could improve PPE stability, allowing its incorporation into functional foods. Nevertheless, studies on the potential biological effects of PPE microparticles (MPPE) in obesity models are lacking. This study aims to evaluate the effect of MPPE on brown adipose tissue (BAT) mitochondrial structure and function and metabolic alterations related to obesity in mice fed a high-fat diet (HFD). PPE was microencapsulated by spray drying using inulin (IN) as a wall material and physically–chemically characterised. Eight-week-old male C57BL/6J mice (n 40) were randomly distributed into five groups: control diet (CD), HFD, HFD + IN, HFD + PPE (50 mg/kg per d TP) and HFD + MPPE (50 mg/kg per d TP), for 14 weeks. A glucose tolerance test and indirect calorimetry were conducted. Blood and adipose tissue samples were obtained. MPPE supplementation prevented HFD-induced body weight gain (P < 0·001), fasting glycaemia (P = 0·007) and total cholesterol rise (P = 0·001). MPPE resulted in higher BAT mitochondrial complex IV activity (P = 0·03) and prevented HFD-induced mitochondrial cristae alteration (P = 0·02). In conclusion, MPPE prevented HFD-induced excessive body weight gain and associated metabolic disturbances, potentially by activating complex IV activity and preserving mitochondrial cristae structure in BAT in mice fed with a HFD.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S000711452000481X</identifier><identifier>PMID: 33256858</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adipocytes ; Adipose tissue ; Adipose tissue (brown) ; Adipose Tissue, Brown - drug effects ; Agricultural wastes ; Animal tissues ; Animals ; Antioxidants ; Bioactive compounds ; Biological effects ; Blood glucose ; Body fat ; Body weight ; Body weight gain ; Calorimetry ; Cholesterol ; Cristae ; Diet ; Diet, High-Fat ; Dietary supplements ; Drying ; Electron Transport Complex IV - metabolism ; Energy ; Functional foods & nutraceuticals ; Glucose tolerance ; High fat diet ; Inulin ; Lasers ; Male ; Metabolism ; Metabolism and Metabolic Studies ; Metabolites ; Mice ; Mice, Inbred C57BL ; Microbiota ; Microencapsulation ; Microparticles ; Mitochondria ; Mitochondria - drug effects ; Morphology ; Obesity ; Obesity - prevention & control ; Particle size ; Phenolic compounds ; Phenols ; Plant extracts ; Plant Extracts - pharmacology ; Polyphenols ; Polyphenols - pharmacology ; Pomegranate ; Spray drying ; Stability ; Structure-function relationships ; Thermogenesis ; Weight Gain</subject><ispartof>British journal of nutrition, 2021-09, Vol.126 (6), p.825-836</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-be7997a3a1307b2b692930554314767ef278225cabbd39e9bf86b39ba204ba0d3</citedby><cites>FETCH-LOGICAL-c373t-be7997a3a1307b2b692930554314767ef278225cabbd39e9bf86b39ba204ba0d3</cites><orcidid>0000-0002-7551-0553 ; 0000-0003-4843-2382 ; 0000-0001-5055-3795 ; 0000-0002-9661-0377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000711452000481X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33256858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Echeverria, Francisca</creatorcontrib><creatorcontrib>Jimenez Patino, Paula Andrea</creatorcontrib><creatorcontrib>Castro-Sepulveda, Mauricio</creatorcontrib><creatorcontrib>Bustamante, Andres</creatorcontrib><creatorcontrib>Garcia Concha, Paula Andrea</creatorcontrib><creatorcontrib>Poblete-Aro, Carlos</creatorcontrib><creatorcontrib>Valenzuela, Rodrigo</creatorcontrib><creatorcontrib>Garcia-Diaz, Diego F.</creatorcontrib><title>Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>Pomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mitochondrial biogenesis and function have also been described. However, once phenolic compounds are extracted, their stability can be affected by diverse factors. Microencapsulation could improve PPE stability, allowing its incorporation into functional foods. Nevertheless, studies on the potential biological effects of PPE microparticles (MPPE) in obesity models are lacking. This study aims to evaluate the effect of MPPE on brown adipose tissue (BAT) mitochondrial structure and function and metabolic alterations related to obesity in mice fed a high-fat diet (HFD). PPE was microencapsulated by spray drying using inulin (IN) as a wall material and physically–chemically characterised. Eight-week-old male C57BL/6J mice (n 40) were randomly distributed into five groups: control diet (CD), HFD, HFD + IN, HFD + PPE (50 mg/kg per d TP) and HFD + MPPE (50 mg/kg per d TP), for 14 weeks. A glucose tolerance test and indirect calorimetry were conducted. Blood and adipose tissue samples were obtained. MPPE supplementation prevented HFD-induced body weight gain (P < 0·001), fasting glycaemia (P = 0·007) and total cholesterol rise (P = 0·001). MPPE resulted in higher BAT mitochondrial complex IV activity (P = 0·03) and prevented HFD-induced mitochondrial cristae alteration (P = 0·02). In conclusion, MPPE prevented HFD-induced excessive body weight gain and associated metabolic disturbances, potentially by activating complex IV activity and preserving mitochondrial cristae structure in BAT in mice fed with a HFD.</description><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose tissue (brown)</subject><subject>Adipose Tissue, Brown - drug effects</subject><subject>Agricultural wastes</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Bioactive compounds</subject><subject>Biological effects</subject><subject>Blood glucose</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Calorimetry</subject><subject>Cholesterol</subject><subject>Cristae</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Dietary supplements</subject><subject>Drying</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Energy</subject><subject>Functional foods & nutraceuticals</subject><subject>Glucose tolerance</subject><subject>High fat diet</subject><subject>Inulin</subject><subject>Lasers</subject><subject>Male</subject><subject>Metabolism</subject><subject>Metabolism and Metabolic Studies</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Microencapsulation</subject><subject>Microparticles</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Morphology</subject><subject>Obesity</subject><subject>Obesity - prevention & control</subject><subject>Particle size</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant extracts</subject><subject>Plant Extracts - pharmacology</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>Pomegranate</subject><subject>Spray drying</subject><subject>Stability</subject><subject>Structure-function relationships</subject><subject>Thermogenesis</subject><subject>Weight Gain</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u1DAQgC0EokvhAbggS1x6CfVPHCdHVFGoVNQDP-IWjZ3JrqvEDrZT2kfj7fCqC0hUnOzxfPN5NEPIS87ecMb16SfGmOa8VqJc6pZ_e0Q2vNaqEk0jHpPNPl3t80fkWUrXJWw5656SIymFalrVbsjPj87GgN7CktYJMg50CTNuI_gS0AVxonibI9hMnR9Wi4nOLge7C36IDiZqw7xMeEsvvtICuRuX7yj4ool4gz4_wKNLGZDClDFCdsEXLzUx_PAUBreEhDS7lFbcv8_OIh1LUwUDunPbXTVCpoPD_Jw8GWFK-OJwHpMv5-8-n32oLq_eX5y9vays1DJXBnXXaZDAJdNGmKYTnWRK1bJMqtE4Ct0KoSwYM8gOOzO2jZGdAcFqA2yQx-Tk3rvE8H3FlPvZJYvTBB7DmnpRNw2TdaNFQV__g16HNfrSXS-U6mTb1ooVit9TZfApRRz7JboZ4l3PWb_fa_9gr6Xm1cG8mhmHPxW_F1kAeZDCbKIbtvj37_9rfwFekbCM</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Echeverria, Francisca</creator><creator>Jimenez Patino, Paula Andrea</creator><creator>Castro-Sepulveda, Mauricio</creator><creator>Bustamante, Andres</creator><creator>Garcia Concha, Paula Andrea</creator><creator>Poblete-Aro, Carlos</creator><creator>Valenzuela, Rodrigo</creator><creator>Garcia-Diaz, Diego F.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7551-0553</orcidid><orcidid>https://orcid.org/0000-0003-4843-2382</orcidid><orcidid>https://orcid.org/0000-0001-5055-3795</orcidid><orcidid>https://orcid.org/0000-0002-9661-0377</orcidid></search><sort><creationdate>20210928</creationdate><title>Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet</title><author>Echeverria, Francisca ; Jimenez Patino, Paula Andrea ; Castro-Sepulveda, Mauricio ; Bustamante, Andres ; Garcia Concha, Paula Andrea ; Poblete-Aro, Carlos ; Valenzuela, Rodrigo ; Garcia-Diaz, Diego F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-be7997a3a1307b2b692930554314767ef278225cabbd39e9bf86b39ba204ba0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose tissue (brown)</topic><topic>Adipose Tissue, Brown - drug effects</topic><topic>Agricultural wastes</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Bioactive compounds</topic><topic>Biological effects</topic><topic>Blood glucose</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Calorimetry</topic><topic>Cholesterol</topic><topic>Cristae</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Dietary supplements</topic><topic>Drying</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Energy</topic><topic>Functional foods & nutraceuticals</topic><topic>Glucose tolerance</topic><topic>High fat diet</topic><topic>Inulin</topic><topic>Lasers</topic><topic>Male</topic><topic>Metabolism</topic><topic>Metabolism and Metabolic Studies</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Microencapsulation</topic><topic>Microparticles</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Morphology</topic><topic>Obesity</topic><topic>Obesity - prevention & control</topic><topic>Particle size</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant extracts</topic><topic>Plant Extracts - pharmacology</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>Pomegranate</topic><topic>Spray drying</topic><topic>Stability</topic><topic>Structure-function relationships</topic><topic>Thermogenesis</topic><topic>Weight Gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverria, Francisca</creatorcontrib><creatorcontrib>Jimenez Patino, Paula Andrea</creatorcontrib><creatorcontrib>Castro-Sepulveda, Mauricio</creatorcontrib><creatorcontrib>Bustamante, Andres</creatorcontrib><creatorcontrib>Garcia Concha, Paula Andrea</creatorcontrib><creatorcontrib>Poblete-Aro, Carlos</creatorcontrib><creatorcontrib>Valenzuela, Rodrigo</creatorcontrib><creatorcontrib>Garcia-Diaz, Diego F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverria, Francisca</au><au>Jimenez Patino, Paula Andrea</au><au>Castro-Sepulveda, Mauricio</au><au>Bustamante, Andres</au><au>Garcia Concha, Paula Andrea</au><au>Poblete-Aro, Carlos</au><au>Valenzuela, Rodrigo</au><au>Garcia-Diaz, Diego F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2021-09-28</date><risdate>2021</risdate><volume>126</volume><issue>6</issue><spage>825</spage><epage>836</epage><pages>825-836</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>Pomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mitochondrial biogenesis and function have also been described. However, once phenolic compounds are extracted, their stability can be affected by diverse factors. Microencapsulation could improve PPE stability, allowing its incorporation into functional foods. Nevertheless, studies on the potential biological effects of PPE microparticles (MPPE) in obesity models are lacking. This study aims to evaluate the effect of MPPE on brown adipose tissue (BAT) mitochondrial structure and function and metabolic alterations related to obesity in mice fed a high-fat diet (HFD). PPE was microencapsulated by spray drying using inulin (IN) as a wall material and physically–chemically characterised. Eight-week-old male C57BL/6J mice (n 40) were randomly distributed into five groups: control diet (CD), HFD, HFD + IN, HFD + PPE (50 mg/kg per d TP) and HFD + MPPE (50 mg/kg per d TP), for 14 weeks. A glucose tolerance test and indirect calorimetry were conducted. Blood and adipose tissue samples were obtained. MPPE supplementation prevented HFD-induced body weight gain (P < 0·001), fasting glycaemia (P = 0·007) and total cholesterol rise (P = 0·001). MPPE resulted in higher BAT mitochondrial complex IV activity (P = 0·03) and prevented HFD-induced mitochondrial cristae alteration (P = 0·02). In conclusion, MPPE prevented HFD-induced excessive body weight gain and associated metabolic disturbances, potentially by activating complex IV activity and preserving mitochondrial cristae structure in BAT in mice fed with a HFD.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>33256858</pmid><doi>10.1017/S000711452000481X</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7551-0553</orcidid><orcidid>https://orcid.org/0000-0003-4843-2382</orcidid><orcidid>https://orcid.org/0000-0001-5055-3795</orcidid><orcidid>https://orcid.org/0000-0002-9661-0377</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1145 |
ispartof | British journal of nutrition, 2021-09, Vol.126 (6), p.825-836 |
issn | 0007-1145 1475-2662 |
language | eng |
recordid | cdi_proquest_miscellaneous_2466034672 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete |
subjects | Adipocytes Adipose tissue Adipose tissue (brown) Adipose Tissue, Brown - drug effects Agricultural wastes Animal tissues Animals Antioxidants Bioactive compounds Biological effects Blood glucose Body fat Body weight Body weight gain Calorimetry Cholesterol Cristae Diet Diet, High-Fat Dietary supplements Drying Electron Transport Complex IV - metabolism Energy Functional foods & nutraceuticals Glucose tolerance High fat diet Inulin Lasers Male Metabolism Metabolism and Metabolic Studies Metabolites Mice Mice, Inbred C57BL Microbiota Microencapsulation Microparticles Mitochondria Mitochondria - drug effects Morphology Obesity Obesity - prevention & control Particle size Phenolic compounds Phenols Plant extracts Plant Extracts - pharmacology Polyphenols Polyphenols - pharmacology Pomegranate Spray drying Stability Structure-function relationships Thermogenesis Weight Gain |
title | Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microencapsulated%20pomegranate%20peel%20extract%20induces%20mitochondrial%20complex%20IV%20activity%20and%20prevents%20mitochondrial%20cristae%20alteration%20in%20brown%20adipose%20tissue%20in%20mice%20fed%20on%20a%20high-fat%20diet&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Echeverria,%20Francisca&rft.date=2021-09-28&rft.volume=126&rft.issue=6&rft.spage=825&rft.epage=836&rft.pages=825-836&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S000711452000481X&rft_dat=%3Cproquest_cross%3E2466034672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559388450&rft_id=info:pmid/33256858&rft_cupid=10_1017_S000711452000481X&rfr_iscdi=true |