TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina

NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2021-03, Vol.296 (2), p.279-287
Hauptverfasser: Zhang, Na, Yuan, Shengliang, Zhao, Chenguang, Park, Robert F., Wen, Xiaolei, Yang, Wenxiang, Liu, Daqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 2
container_start_page 279
container_title Molecular genetics and genomics : MGG
container_volume 296
creator Zhang, Na
Yuan, Shengliang
Zhao, Chenguang
Park, Robert F.
Wen, Xiaolei
Yang, Wenxiang
Zhang, Na
Liu, Daqun
description NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate of Puccinia triticina ( Pt ). The TaNAC35 gene was cloned from this line, and blastp results showed that its open reading frame (ORF) was 96.16% identical to the NAC35-like sequence reported from Aegilops tauschii , and that it encoded a protein with 387 amino acids (aa) including a conserved NAM domain with 145 aa at the N-terminal alongside the transcriptional activation domain with 220 aa in the C-terminal. Yeast-one-hybrid analysis proved that the C-terminal of the TaNAC35 protein was responsible for transcriptional activation. A 250-bp fragment from the 3′-end of this target gene was introduced to a BSMV-VIGS vector and used to infect the wheat line Thatcher + Lr14b (TcLr14b). The BSMV-VIGS/TaNAC35-infected plant material showed enhanced resistance (infection type “1”) to Pt pathotype THTT, which was fully virulent (infection type “4”) on BSMV-VIGS only infected TcLr14b plants. Histological studies showed that inhibition of TaNAC35 reduced the formation of haustorial mother cells (HMC) and mycelial growth, implying that the TaNAC35 gene plays a negative role in the response of TcLr14b to Pt pathotype THTT. These results provide molecular insight into the interaction between Pt and its wheat host, and identify a potential target for engineering resistance in wheat to this damaging pathogen.
doi_str_mv 10.1007/s00438-020-01746-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2465440022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491440535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2aa090910e6d9a7a0b423c15b94d7a05885da5c1a7488c064d4a986cb528468b3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoqXwAiyQJTZsAv5Psqyu-JMqYFHW1sSZe3GVOBfbacsD8N7M5ZYisUCy5RnPd44tHcaeS_FaCtG-KUIY3TVCiUbI1rjm9gE7lU62jXFKP7yvpT1hT0q5EkQ51T5mJ1orY42Wp-znJXw632jLIdTCgRZPuIMar5Fn3K0T1CXzLe0JYcvzWirdl1gqpIA8JhKEZd6TYpgOfcVMVnFJfMB6g5gO45nam28IlUMa-Zc1hJgi8JpjjVTCU_ZoC1PBZ3fnGfv67u3l5kNz8fn9x835RRN0a2ujAEQveinQjT20IAajdJB26M1Ine06O4INElrTdUE4MxroOxcGqzrjukGfsVdH331evq9Yqp9jCThNkHBZi1fGWWOEUIrQl_-gV8uaE_2OqF4SZbUlSh2pkJdSMm79PscZ8g8vhT-E5I8heQrJ_w7J35LoxZ31Osw43kv-pEKAPgKFRmmH-e_b_7H9BeGPnUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491440535</pqid></control><display><type>article</type><title>TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Na ; Yuan, Shengliang ; Zhao, Chenguang ; Park, Robert F. ; Wen, Xiaolei ; Yang, Wenxiang ; Zhang, Na ; Liu, Daqun</creator><creatorcontrib>Zhang, Na ; Yuan, Shengliang ; Zhao, Chenguang ; Park, Robert F. ; Wen, Xiaolei ; Yang, Wenxiang ; Zhang, Na ; Liu, Daqun</creatorcontrib><description>NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate of Puccinia triticina ( Pt ). The TaNAC35 gene was cloned from this line, and blastp results showed that its open reading frame (ORF) was 96.16% identical to the NAC35-like sequence reported from Aegilops tauschii , and that it encoded a protein with 387 amino acids (aa) including a conserved NAM domain with 145 aa at the N-terminal alongside the transcriptional activation domain with 220 aa in the C-terminal. Yeast-one-hybrid analysis proved that the C-terminal of the TaNAC35 protein was responsible for transcriptional activation. A 250-bp fragment from the 3′-end of this target gene was introduced to a BSMV-VIGS vector and used to infect the wheat line Thatcher + Lr14b (TcLr14b). The BSMV-VIGS/TaNAC35-infected plant material showed enhanced resistance (infection type “1”) to Pt pathotype THTT, which was fully virulent (infection type “4”) on BSMV-VIGS only infected TcLr14b plants. Histological studies showed that inhibition of TaNAC35 reduced the formation of haustorial mother cells (HMC) and mycelial growth, implying that the TaNAC35 gene plays a negative role in the response of TcLr14b to Pt pathotype THTT. These results provide molecular insight into the interaction between Pt and its wheat host, and identify a potential target for engineering resistance in wheat to this damaging pathogen.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-020-01746-x</identifier><identifier>PMID: 33245431</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Biochemistry ; Biomedical and Life Sciences ; Cloning, Molecular ; Disease Resistance ; Host-Pathogen Interactions ; Human Genetics ; Leaf rust ; Life Sciences ; Microbial Genetics and Genomics ; Mycelia ; Open reading frames ; Original Article ; Phylogeny ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant Leaves - genetics ; Plant Leaves - microbiology ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein Domains ; Puccinia - pathogenicity ; Puccinia triticina ; Transcription activation ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; Triticum - genetics ; Triticum - microbiology ; Virulence</subject><ispartof>Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.279-287</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2aa090910e6d9a7a0b423c15b94d7a05885da5c1a7488c064d4a986cb528468b3</citedby><cites>FETCH-LOGICAL-c375t-2aa090910e6d9a7a0b423c15b94d7a05885da5c1a7488c064d4a986cb528468b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-020-01746-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-020-01746-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33245431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Yuan, Shengliang</creatorcontrib><creatorcontrib>Zhao, Chenguang</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wen, Xiaolei</creatorcontrib><creatorcontrib>Yang, Wenxiang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Liu, Daqun</creatorcontrib><title>TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate of Puccinia triticina ( Pt ). The TaNAC35 gene was cloned from this line, and blastp results showed that its open reading frame (ORF) was 96.16% identical to the NAC35-like sequence reported from Aegilops tauschii , and that it encoded a protein with 387 amino acids (aa) including a conserved NAM domain with 145 aa at the N-terminal alongside the transcriptional activation domain with 220 aa in the C-terminal. Yeast-one-hybrid analysis proved that the C-terminal of the TaNAC35 protein was responsible for transcriptional activation. A 250-bp fragment from the 3′-end of this target gene was introduced to a BSMV-VIGS vector and used to infect the wheat line Thatcher + Lr14b (TcLr14b). The BSMV-VIGS/TaNAC35-infected plant material showed enhanced resistance (infection type “1”) to Pt pathotype THTT, which was fully virulent (infection type “4”) on BSMV-VIGS only infected TcLr14b plants. Histological studies showed that inhibition of TaNAC35 reduced the formation of haustorial mother cells (HMC) and mycelial growth, implying that the TaNAC35 gene plays a negative role in the response of TcLr14b to Pt pathotype THTT. These results provide molecular insight into the interaction between Pt and its wheat host, and identify a potential target for engineering resistance in wheat to this damaging pathogen.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cloning, Molecular</subject><subject>Disease Resistance</subject><subject>Host-Pathogen Interactions</subject><subject>Human Genetics</subject><subject>Leaf rust</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Mycelia</subject><subject>Open reading frames</subject><subject>Original Article</subject><subject>Phylogeny</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - microbiology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Puccinia - pathogenicity</subject><subject>Puccinia triticina</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Virulence</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1TAQhS0EoqXwAiyQJTZsAv5Psqyu-JMqYFHW1sSZe3GVOBfbacsD8N7M5ZYisUCy5RnPd44tHcaeS_FaCtG-KUIY3TVCiUbI1rjm9gE7lU62jXFKP7yvpT1hT0q5EkQ51T5mJ1orY42Wp-znJXw632jLIdTCgRZPuIMar5Fn3K0T1CXzLe0JYcvzWirdl1gqpIA8JhKEZd6TYpgOfcVMVnFJfMB6g5gO45nam28IlUMa-Zc1hJgi8JpjjVTCU_ZoC1PBZ3fnGfv67u3l5kNz8fn9x835RRN0a2ujAEQveinQjT20IAajdJB26M1Ine06O4INElrTdUE4MxroOxcGqzrjukGfsVdH331evq9Yqp9jCThNkHBZi1fGWWOEUIrQl_-gV8uaE_2OqF4SZbUlSh2pkJdSMm79PscZ8g8vhT-E5I8heQrJ_w7J35LoxZ31Osw43kv-pEKAPgKFRmmH-e_b_7H9BeGPnUk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, Na</creator><creator>Yuan, Shengliang</creator><creator>Zhao, Chenguang</creator><creator>Park, Robert F.</creator><creator>Wen, Xiaolei</creator><creator>Yang, Wenxiang</creator><creator>Zhang, Na</creator><creator>Liu, Daqun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina</title><author>Zhang, Na ; Yuan, Shengliang ; Zhao, Chenguang ; Park, Robert F. ; Wen, Xiaolei ; Yang, Wenxiang ; Zhang, Na ; Liu, Daqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2aa090910e6d9a7a0b423c15b94d7a05885da5c1a7488c064d4a986cb528468b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cloning, Molecular</topic><topic>Disease Resistance</topic><topic>Host-Pathogen Interactions</topic><topic>Human Genetics</topic><topic>Leaf rust</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Mycelia</topic><topic>Open reading frames</topic><topic>Original Article</topic><topic>Phylogeny</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - microbiology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Puccinia - pathogenicity</topic><topic>Puccinia triticina</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Yuan, Shengliang</creatorcontrib><creatorcontrib>Zhao, Chenguang</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wen, Xiaolei</creatorcontrib><creatorcontrib>Yang, Wenxiang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Liu, Daqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Na</au><au>Yuan, Shengliang</au><au>Zhao, Chenguang</au><au>Park, Robert F.</au><au>Wen, Xiaolei</au><au>Yang, Wenxiang</au><au>Zhang, Na</au><au>Liu, Daqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>296</volume><issue>2</issue><spage>279</spage><epage>287</epage><pages>279-287</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>NAC (NAM, AFAT1/2, and CUC2) transcription factors play important roles in plant growth and in resistance to abiotic and biotic stresses. Here, we show that the TaNAC35 gene negatively regulates leaf rust resistance in the wheat line Thatcher + Lr14b (TcLr14b) when challenged with a virulent isolate of Puccinia triticina ( Pt ). The TaNAC35 gene was cloned from this line, and blastp results showed that its open reading frame (ORF) was 96.16% identical to the NAC35-like sequence reported from Aegilops tauschii , and that it encoded a protein with 387 amino acids (aa) including a conserved NAM domain with 145 aa at the N-terminal alongside the transcriptional activation domain with 220 aa in the C-terminal. Yeast-one-hybrid analysis proved that the C-terminal of the TaNAC35 protein was responsible for transcriptional activation. A 250-bp fragment from the 3′-end of this target gene was introduced to a BSMV-VIGS vector and used to infect the wheat line Thatcher + Lr14b (TcLr14b). The BSMV-VIGS/TaNAC35-infected plant material showed enhanced resistance (infection type “1”) to Pt pathotype THTT, which was fully virulent (infection type “4”) on BSMV-VIGS only infected TcLr14b plants. Histological studies showed that inhibition of TaNAC35 reduced the formation of haustorial mother cells (HMC) and mycelial growth, implying that the TaNAC35 gene plays a negative role in the response of TcLr14b to Pt pathotype THTT. These results provide molecular insight into the interaction between Pt and its wheat host, and identify a potential target for engineering resistance in wheat to this damaging pathogen.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33245431</pmid><doi>10.1007/s00438-020-01746-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.279-287
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_2465440022
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Amino Acid Sequence
Animal Genetics and Genomics
Biochemistry
Biomedical and Life Sciences
Cloning, Molecular
Disease Resistance
Host-Pathogen Interactions
Human Genetics
Leaf rust
Life Sciences
Microbial Genetics and Genomics
Mycelia
Open reading frames
Original Article
Phylogeny
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant Leaves - genetics
Plant Leaves - microbiology
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Protein Domains
Puccinia - pathogenicity
Puccinia triticina
Transcription activation
Transcription factors
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
Triticum - genetics
Triticum - microbiology
Virulence
title TaNAC35 acts as a negative regulator for leaf rust resistance in a compatible interaction between common wheat and Puccinia triticina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TaNAC35%20acts%20as%20a%20negative%20regulator%20for%20leaf%20rust%20resistance%20in%20a%20compatible%20interaction%20between%20common%20wheat%20and%20Puccinia%20triticina&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Zhang,%20Na&rft.date=2021-03-01&rft.volume=296&rft.issue=2&rft.spage=279&rft.epage=287&rft.pages=279-287&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-020-01746-x&rft_dat=%3Cproquest_cross%3E2491440535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491440535&rft_id=info:pmid/33245431&rfr_iscdi=true