Evaluating and minimizing batch effects in metabolomics

Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mass spectrometry reviews 2022-05, Vol.41 (3), p.421-442
Hauptverfasser: Han, Wei, Li, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 3
container_start_page 421
container_title Mass spectrometry reviews
container_volume 41
creator Han, Wei
Li, Liang
description Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.
doi_str_mv 10.1002/mas.21672
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464607301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647615961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343</originalsourceid><addsrcrecordid>eNp10M1LwzAYx_EgipvTg_-AFLzooS4vbdIex5gvMPGgnsOTl2pG086mVeZfb2enB8FTCHz48vBD6JTgK4IxnXoIV5RwQffQmOA8i6nIxD4aYypELDATI3QUwgpjQlJCDtGIMcoyzMkYicU7lB20rnqJoDKRd5Xz7nP7VdDq18gWhdVtiFwVeduCqsvaOx2O0UEBZbAnu3eCnq8XT_PbePlwczefLWOdkJzGQAxWKQPg1FqjsbAGVC4KkhnNTKZpqjXozDBqEwVpnifcsBQUFUWmcpawCboYuuumfutsaKV3QduyhMrWXZA04QnHgmHS0_M_dFV3TdVfJylPBCdpzrfqclC6qUNobCHXjfPQbCTBcrum7NeU32v29mxX7JS35lf-zNeD6QA-XGk3_5fk_exxSH4B5lR9qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647615961</pqid></control><display><type>article</type><title>Evaluating and minimizing batch effects in metabolomics</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Han, Wei ; Li, Liang</creator><creatorcontrib>Han, Wei ; Li, Liang</creatorcontrib><description>Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.</description><identifier>ISSN: 0277-7037</identifier><identifier>EISSN: 1098-2787</identifier><identifier>DOI: 10.1002/mas.21672</identifier><identifier>PMID: 33238061</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>batch effect ; Mass Spectrometry ; Mass spectroscopy ; Metabolome ; metabolome analysis ; Metabolomics ; Metabolomics - methods ; NMR ; Phenotypes</subject><ispartof>Mass spectrometry reviews, 2022-05, Vol.41 (3), p.421-442</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343</citedby><cites>FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmas.21672$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmas.21672$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33238061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><title>Evaluating and minimizing batch effects in metabolomics</title><title>Mass spectrometry reviews</title><addtitle>Mass Spectrom Rev</addtitle><description>Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.</description><subject>batch effect</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolome</subject><subject>metabolome analysis</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>NMR</subject><subject>Phenotypes</subject><issn>0277-7037</issn><issn>1098-2787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1LwzAYx_EgipvTg_-AFLzooS4vbdIex5gvMPGgnsOTl2pG086mVeZfb2enB8FTCHz48vBD6JTgK4IxnXoIV5RwQffQmOA8i6nIxD4aYypELDATI3QUwgpjQlJCDtGIMcoyzMkYicU7lB20rnqJoDKRd5Xz7nP7VdDq18gWhdVtiFwVeduCqsvaOx2O0UEBZbAnu3eCnq8XT_PbePlwczefLWOdkJzGQAxWKQPg1FqjsbAGVC4KkhnNTKZpqjXozDBqEwVpnifcsBQUFUWmcpawCboYuuumfutsaKV3QduyhMrWXZA04QnHgmHS0_M_dFV3TdVfJylPBCdpzrfqclC6qUNobCHXjfPQbCTBcrum7NeU32v29mxX7JS35lf-zNeD6QA-XGk3_5fk_exxSH4B5lR9qQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Han, Wei</creator><creator>Li, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>202205</creationdate><title>Evaluating and minimizing batch effects in metabolomics</title><author>Han, Wei ; Li, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>batch effect</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolome</topic><topic>metabolome analysis</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>NMR</topic><topic>Phenotypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mass spectrometry reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Wei</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating and minimizing batch effects in metabolomics</atitle><jtitle>Mass spectrometry reviews</jtitle><addtitle>Mass Spectrom Rev</addtitle><date>2022-05</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><spage>421</spage><epage>442</epage><pages>421-442</pages><issn>0277-7037</issn><eissn>1098-2787</eissn><abstract>Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33238061</pmid><doi>10.1002/mas.21672</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-7037
ispartof Mass spectrometry reviews, 2022-05, Vol.41 (3), p.421-442
issn 0277-7037
1098-2787
language eng
recordid cdi_proquest_miscellaneous_2464607301
source MEDLINE; Wiley Journals
subjects batch effect
Mass Spectrometry
Mass spectroscopy
Metabolome
metabolome analysis
Metabolomics
Metabolomics - methods
NMR
Phenotypes
title Evaluating and minimizing batch effects in metabolomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20and%20minimizing%20batch%20effects%20in%20metabolomics&rft.jtitle=Mass%20spectrometry%20reviews&rft.au=Han,%20Wei&rft.date=2022-05&rft.volume=41&rft.issue=3&rft.spage=421&rft.epage=442&rft.pages=421-442&rft.issn=0277-7037&rft.eissn=1098-2787&rft_id=info:doi/10.1002/mas.21672&rft_dat=%3Cproquest_cross%3E2647615961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647615961&rft_id=info:pmid/33238061&rfr_iscdi=true