SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature

The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably  SUCLG1  and  SUCLA2 . Here, we presented a 5-year-old boy with clinical features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2020-12, Vol.47 (12), p.9699-9714
Hauptverfasser: Molaei Ramsheh, Samira, Erfanian Omidvar, Maryam, Tabasinezhad, Maryam, Alipoor, Behnam, Salmani, Tayyeb Ali, Ghaedi, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9714
container_issue 12
container_start_page 9699
container_title Molecular biology reports
container_volume 47
creator Molaei Ramsheh, Samira
Erfanian Omidvar, Maryam
Tabasinezhad, Maryam
Alipoor, Behnam
Salmani, Tayyeb Ali
Ghaedi, Hamid
description The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably  SUCLG1  and  SUCLA2 . Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of  SUCLG1  mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the  SUCLG1  gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the  in-silico  analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the  SUCLG1  gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.
doi_str_mv 10.1007/s11033-020-05999-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464150849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464150849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAjZvRvOYRd1K0CgUX2nVIkxs7ZWZSk4wy_95pKwguXN3NOR-Xg9AlJTeUkPI2Uko4zwgjGcmllNlwhCY0L3kmZFkdownhhGaiyukpOotxQwgRtMwnSL0uZ4s5xW2fdKp9F7HuLG7r5M3adzbUusHQGdiudePbwW91Wg93WGOjI-CYejvsjQCfNXxh73BaA27qBEGnPsA5OnG6iXDxc6do-fjwNnvKFi_z59n9IjM8ZynTtiq0dMZyWjFpmHaMAiOOFBaArwprXSUl525lC7lylbZih1XGrJjQhvIpuj7sboP_6CEm1dbRQNPoDnwfFROFoDmphBzRqz_oxvehG79TLC_LUghJy5FiB8oEH2MAp7ahbnUYFCVq11wdmquxudo3V8Mo8YMUR7h7h_A7_Y_1DUVohlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577744917</pqid></control><display><type>article</type><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><source>SpringerNature Journals</source><creator>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</creator><creatorcontrib>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</creatorcontrib><description>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably  SUCLG1  and  SUCLA2 . Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of  SUCLG1  mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A &gt; T (hg19) in the  SUCLG1  gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the  in-silico  analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A &gt; T in the  SUCLG1  gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-020-05999-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Biomedical and Life Sciences ; Genomes ; Genotyping ; Histology ; Life Sciences ; Literature reviews ; Mitochondria ; Mitochondrial DNA ; Morphology ; Mutation ; Neurodegenerative diseases ; Original Article ; Phenotypes</subject><ispartof>Molecular biology reports, 2020-12, Vol.47 (12), p.9699-9714</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</citedby><cites>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</cites><orcidid>0000-0002-5034-0586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-020-05999-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-020-05999-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Molaei Ramsheh, Samira</creatorcontrib><creatorcontrib>Erfanian Omidvar, Maryam</creatorcontrib><creatorcontrib>Tabasinezhad, Maryam</creatorcontrib><creatorcontrib>Alipoor, Behnam</creatorcontrib><creatorcontrib>Salmani, Tayyeb Ali</creatorcontrib><creatorcontrib>Ghaedi, Hamid</creatorcontrib><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><description>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably  SUCLG1  and  SUCLA2 . Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of  SUCLG1  mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A &gt; T (hg19) in the  SUCLG1  gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the  in-silico  analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A &gt; T in the  SUCLG1  gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Literature reviews</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Original Article</subject><subject>Phenotypes</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEURoMoWKt_wFXAjZvRvOYRd1K0CgUX2nVIkxs7ZWZSk4wy_95pKwguXN3NOR-Xg9AlJTeUkPI2Uko4zwgjGcmllNlwhCY0L3kmZFkdownhhGaiyukpOotxQwgRtMwnSL0uZ4s5xW2fdKp9F7HuLG7r5M3adzbUusHQGdiudePbwW91Wg93WGOjI-CYejvsjQCfNXxh73BaA27qBEGnPsA5OnG6iXDxc6do-fjwNnvKFi_z59n9IjM8ZynTtiq0dMZyWjFpmHaMAiOOFBaArwprXSUl525lC7lylbZih1XGrJjQhvIpuj7sboP_6CEm1dbRQNPoDnwfFROFoDmphBzRqz_oxvehG79TLC_LUghJy5FiB8oEH2MAp7ahbnUYFCVq11wdmquxudo3V8Mo8YMUR7h7h_A7_Y_1DUVohlM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Molaei Ramsheh, Samira</creator><creator>Erfanian Omidvar, Maryam</creator><creator>Tabasinezhad, Maryam</creator><creator>Alipoor, Behnam</creator><creator>Salmani, Tayyeb Ali</creator><creator>Ghaedi, Hamid</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5034-0586</orcidid></search><sort><creationdate>20201201</creationdate><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><author>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Literature reviews</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Original Article</topic><topic>Phenotypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molaei Ramsheh, Samira</creatorcontrib><creatorcontrib>Erfanian Omidvar, Maryam</creatorcontrib><creatorcontrib>Tabasinezhad, Maryam</creatorcontrib><creatorcontrib>Alipoor, Behnam</creatorcontrib><creatorcontrib>Salmani, Tayyeb Ali</creatorcontrib><creatorcontrib>Ghaedi, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molaei Ramsheh, Samira</au><au>Erfanian Omidvar, Maryam</au><au>Tabasinezhad, Maryam</au><au>Alipoor, Behnam</au><au>Salmani, Tayyeb Ali</au><au>Ghaedi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>47</volume><issue>12</issue><spage>9699</spage><epage>9714</epage><pages>9699-9714</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably  SUCLG1  and  SUCLA2 . Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of  SUCLG1  mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A &gt; T (hg19) in the  SUCLG1  gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the  in-silico  analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A &gt; T in the  SUCLG1  gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11033-020-05999-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5034-0586</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2020-12, Vol.47 (12), p.9699-9714
issn 0301-4851
1573-4978
language eng
recordid cdi_proquest_miscellaneous_2464150849
source SpringerNature Journals
subjects Animal Anatomy
Animal Biochemistry
Biomedical and Life Sciences
Genomes
Genotyping
Histology
Life Sciences
Literature reviews
Mitochondria
Mitochondrial DNA
Morphology
Mutation
Neurodegenerative diseases
Original Article
Phenotypes
title SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUCLG1%20mutations%20and%20mitochondrial%20encephalomyopathy:%20a%20case%20study%20and%20review%20of%20the%20literature&rft.jtitle=Molecular%20biology%20reports&rft.au=Molaei%20Ramsheh,%20Samira&rft.date=2020-12-01&rft.volume=47&rft.issue=12&rft.spage=9699&rft.epage=9714&rft.pages=9699-9714&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-020-05999-y&rft_dat=%3Cproquest_cross%3E2464150849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577744917&rft_id=info:pmid/&rfr_iscdi=true