SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature
The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably SUCLG1 and SUCLA2 . Here, we presented a 5-year-old boy with clinical features...
Gespeichert in:
Veröffentlicht in: | Molecular biology reports 2020-12, Vol.47 (12), p.9699-9714 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9714 |
---|---|
container_issue | 12 |
container_start_page | 9699 |
container_title | Molecular biology reports |
container_volume | 47 |
creator | Molaei Ramsheh, Samira Erfanian Omidvar, Maryam Tabasinezhad, Maryam Alipoor, Behnam Salmani, Tayyeb Ali Ghaedi, Hamid |
description | The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably
SUCLG1
and
SUCLA2
. Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of
SUCLG1
mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the
SUCLG1
gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the
in-silico
analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the
SUCLG1
gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family. |
doi_str_mv | 10.1007/s11033-020-05999-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464150849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464150849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXAjZvRvOYRd1K0CgUX2nVIkxs7ZWZSk4wy_95pKwguXN3NOR-Xg9AlJTeUkPI2Uko4zwgjGcmllNlwhCY0L3kmZFkdownhhGaiyukpOotxQwgRtMwnSL0uZ4s5xW2fdKp9F7HuLG7r5M3adzbUusHQGdiudePbwW91Wg93WGOjI-CYejvsjQCfNXxh73BaA27qBEGnPsA5OnG6iXDxc6do-fjwNnvKFi_z59n9IjM8ZynTtiq0dMZyWjFpmHaMAiOOFBaArwprXSUl525lC7lylbZih1XGrJjQhvIpuj7sboP_6CEm1dbRQNPoDnwfFROFoDmphBzRqz_oxvehG79TLC_LUghJy5FiB8oEH2MAp7ahbnUYFCVq11wdmquxudo3V8Mo8YMUR7h7h_A7_Y_1DUVohlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577744917</pqid></control><display><type>article</type><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><source>SpringerNature Journals</source><creator>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</creator><creatorcontrib>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</creatorcontrib><description>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably
SUCLG1
and
SUCLA2
. Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of
SUCLG1
mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the
SUCLG1
gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the
in-silico
analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the
SUCLG1
gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-020-05999-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Biomedical and Life Sciences ; Genomes ; Genotyping ; Histology ; Life Sciences ; Literature reviews ; Mitochondria ; Mitochondrial DNA ; Morphology ; Mutation ; Neurodegenerative diseases ; Original Article ; Phenotypes</subject><ispartof>Molecular biology reports, 2020-12, Vol.47 (12), p.9699-9714</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</citedby><cites>FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</cites><orcidid>0000-0002-5034-0586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-020-05999-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-020-05999-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Molaei Ramsheh, Samira</creatorcontrib><creatorcontrib>Erfanian Omidvar, Maryam</creatorcontrib><creatorcontrib>Tabasinezhad, Maryam</creatorcontrib><creatorcontrib>Alipoor, Behnam</creatorcontrib><creatorcontrib>Salmani, Tayyeb Ali</creatorcontrib><creatorcontrib>Ghaedi, Hamid</creatorcontrib><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><description>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably
SUCLG1
and
SUCLA2
. Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of
SUCLG1
mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the
SUCLG1
gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the
in-silico
analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the
SUCLG1
gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Literature reviews</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Original Article</subject><subject>Phenotypes</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEURoMoWKt_wFXAjZvRvOYRd1K0CgUX2nVIkxs7ZWZSk4wy_95pKwguXN3NOR-Xg9AlJTeUkPI2Uko4zwgjGcmllNlwhCY0L3kmZFkdownhhGaiyukpOotxQwgRtMwnSL0uZ4s5xW2fdKp9F7HuLG7r5M3adzbUusHQGdiudePbwW91Wg93WGOjI-CYejvsjQCfNXxh73BaA27qBEGnPsA5OnG6iXDxc6do-fjwNnvKFi_z59n9IjM8ZynTtiq0dMZyWjFpmHaMAiOOFBaArwprXSUl525lC7lylbZih1XGrJjQhvIpuj7sboP_6CEm1dbRQNPoDnwfFROFoDmphBzRqz_oxvehG79TLC_LUghJy5FiB8oEH2MAp7ahbnUYFCVq11wdmquxudo3V8Mo8YMUR7h7h_A7_Y_1DUVohlM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Molaei Ramsheh, Samira</creator><creator>Erfanian Omidvar, Maryam</creator><creator>Tabasinezhad, Maryam</creator><creator>Alipoor, Behnam</creator><creator>Salmani, Tayyeb Ali</creator><creator>Ghaedi, Hamid</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5034-0586</orcidid></search><sort><creationdate>20201201</creationdate><title>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</title><author>Molaei Ramsheh, Samira ; Erfanian Omidvar, Maryam ; Tabasinezhad, Maryam ; Alipoor, Behnam ; Salmani, Tayyeb Ali ; Ghaedi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ad86a9fcd31829c2af21e20f06dee3b6ddf89933fbd69bf8ad429c28ccb24ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Literature reviews</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Original Article</topic><topic>Phenotypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molaei Ramsheh, Samira</creatorcontrib><creatorcontrib>Erfanian Omidvar, Maryam</creatorcontrib><creatorcontrib>Tabasinezhad, Maryam</creatorcontrib><creatorcontrib>Alipoor, Behnam</creatorcontrib><creatorcontrib>Salmani, Tayyeb Ali</creatorcontrib><creatorcontrib>Ghaedi, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molaei Ramsheh, Samira</au><au>Erfanian Omidvar, Maryam</au><au>Tabasinezhad, Maryam</au><au>Alipoor, Behnam</au><au>Salmani, Tayyeb Ali</au><au>Ghaedi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>47</volume><issue>12</issue><spage>9699</spage><epage>9714</epage><pages>9699-9714</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably
SUCLG1
and
SUCLA2
. Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of
SUCLG1
mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the
SUCLG1
gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the
in-silico
analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the
SUCLG1
gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11033-020-05999-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5034-0586</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4851 |
ispartof | Molecular biology reports, 2020-12, Vol.47 (12), p.9699-9714 |
issn | 0301-4851 1573-4978 |
language | eng |
recordid | cdi_proquest_miscellaneous_2464150849 |
source | SpringerNature Journals |
subjects | Animal Anatomy Animal Biochemistry Biomedical and Life Sciences Genomes Genotyping Histology Life Sciences Literature reviews Mitochondria Mitochondrial DNA Morphology Mutation Neurodegenerative diseases Original Article Phenotypes |
title | SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUCLG1%20mutations%20and%20mitochondrial%20encephalomyopathy:%20a%20case%20study%20and%20review%20of%20the%20literature&rft.jtitle=Molecular%20biology%20reports&rft.au=Molaei%20Ramsheh,%20Samira&rft.date=2020-12-01&rft.volume=47&rft.issue=12&rft.spage=9699&rft.epage=9714&rft.pages=9699-9714&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-020-05999-y&rft_dat=%3Cproquest_cross%3E2464150849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577744917&rft_id=info:pmid/&rfr_iscdi=true |