Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells

Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-12, Vol.124 (49), p.10324-10329
Hauptverfasser: Fuhrer, Timothy J, Snelgrove, Jordan, Corley, Cynthia A, Iacono, Scott T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10329
container_issue 49
container_start_page 10324
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Fuhrer, Timothy J
Snelgrove, Jordan
Corley, Cynthia A
Iacono, Scott T
description Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise as efficient charge transfer agents. Despite the heavy demand for research in this area, there have been no studies reported to date that explore the electronic behavior of molecules containing both fullerene and fulvene groups. The lack of interest may be attributed to inherent limitations and inaccuracy in most density functional theory (DFT) band gap calculations for large molecules. Herein we present a systematic computational investigation of the band gaps and dipole moments of several test fullerene–fulvene molecules using a novel DFT method that has been modified to allow accurate computation of the band gaps of this class of molecules. Calculated results showed promising low band gap energies and attractive conductive properties for all fullerene–fulvene derivatives. This new DFT method can conceivably be an invaluable tool that can provide predictive insight into the suitability of similar high molecular weight materials for application in organic solar cell devices.
doi_str_mv 10.1021/acs.jpca.0c06469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464149905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464149905</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-15cfa51d270e4277d70922d8c406dd2894fb47ad2bef1b06aa94d45c3a66de603</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSsEEmNw55gjBzqcNEnXIyoMJk3agXGOvCQdnbpmJO2k8etJ2a6cbD8_W_aXJPcUJhQYfUIdJtu9xglokFwWF8mICgapYFRcxhymRSpkVlwnNyFsAYBmjI8S92LbUHdHMutb3dWuxYasvqzzRzJvDzZ09QYHmbgqWpqDbW36Yn19iOqPNYPWWB_VQDCQEltTG-xiVTlPln6Dba3Jh2vQk9I2TbhNripsgr07x3HyOXtdle_pYvk2L58XKWY061IqdIWCGpaD5SzPTQ4FY2aqOUhj2LTg1ZrnaNjaVnQNErHghgudoZTGSsjGycNp79677z7-oXZ10PECbK3rg2JccsqLAkS0wsmqvQvB20rtfb1Df1QU1MBWRbZqYKvObOPI42nkr-N6H7GF_-2_fJV_CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464149905</pqid></control><display><type>article</type><title>Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells</title><source>ACS Publications</source><creator>Fuhrer, Timothy J ; Snelgrove, Jordan ; Corley, Cynthia A ; Iacono, Scott T</creator><creatorcontrib>Fuhrer, Timothy J ; Snelgrove, Jordan ; Corley, Cynthia A ; Iacono, Scott T</creatorcontrib><description>Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise as efficient charge transfer agents. Despite the heavy demand for research in this area, there have been no studies reported to date that explore the electronic behavior of molecules containing both fullerene and fulvene groups. The lack of interest may be attributed to inherent limitations and inaccuracy in most density functional theory (DFT) band gap calculations for large molecules. Herein we present a systematic computational investigation of the band gaps and dipole moments of several test fullerene–fulvene molecules using a novel DFT method that has been modified to allow accurate computation of the band gaps of this class of molecules. Calculated results showed promising low band gap energies and attractive conductive properties for all fullerene–fulvene derivatives. This new DFT method can conceivably be an invaluable tool that can provide predictive insight into the suitability of similar high molecular weight materials for application in organic solar cell devices.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c06469</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-12, Vol.124 (49), p.10324-10329</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-15cfa51d270e4277d70922d8c406dd2894fb47ad2bef1b06aa94d45c3a66de603</citedby><cites>FETCH-LOGICAL-a313t-15cfa51d270e4277d70922d8c406dd2894fb47ad2bef1b06aa94d45c3a66de603</cites><orcidid>0000-0003-2405-8744 ; 0000-0002-2313-2618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c06469$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c06469$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fuhrer, Timothy J</creatorcontrib><creatorcontrib>Snelgrove, Jordan</creatorcontrib><creatorcontrib>Corley, Cynthia A</creatorcontrib><creatorcontrib>Iacono, Scott T</creatorcontrib><title>Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise as efficient charge transfer agents. Despite the heavy demand for research in this area, there have been no studies reported to date that explore the electronic behavior of molecules containing both fullerene and fulvene groups. The lack of interest may be attributed to inherent limitations and inaccuracy in most density functional theory (DFT) band gap calculations for large molecules. Herein we present a systematic computational investigation of the band gaps and dipole moments of several test fullerene–fulvene molecules using a novel DFT method that has been modified to allow accurate computation of the band gaps of this class of molecules. Calculated results showed promising low band gap energies and attractive conductive properties for all fullerene–fulvene derivatives. This new DFT method can conceivably be an invaluable tool that can provide predictive insight into the suitability of similar high molecular weight materials for application in organic solar cell devices.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSsEEmNw55gjBzqcNEnXIyoMJk3agXGOvCQdnbpmJO2k8etJ2a6cbD8_W_aXJPcUJhQYfUIdJtu9xglokFwWF8mICgapYFRcxhymRSpkVlwnNyFsAYBmjI8S92LbUHdHMutb3dWuxYasvqzzRzJvDzZ09QYHmbgqWpqDbW36Yn19iOqPNYPWWB_VQDCQEltTG-xiVTlPln6Dba3Jh2vQk9I2TbhNripsgr07x3HyOXtdle_pYvk2L58XKWY061IqdIWCGpaD5SzPTQ4FY2aqOUhj2LTg1ZrnaNjaVnQNErHghgudoZTGSsjGycNp79677z7-oXZ10PECbK3rg2JccsqLAkS0wsmqvQvB20rtfb1Df1QU1MBWRbZqYKvObOPI42nkr-N6H7GF_-2_fJV_CQ</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Fuhrer, Timothy J</creator><creator>Snelgrove, Jordan</creator><creator>Corley, Cynthia A</creator><creator>Iacono, Scott T</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2405-8744</orcidid><orcidid>https://orcid.org/0000-0002-2313-2618</orcidid></search><sort><creationdate>20201210</creationdate><title>Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells</title><author>Fuhrer, Timothy J ; Snelgrove, Jordan ; Corley, Cynthia A ; Iacono, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-15cfa51d270e4277d70922d8c406dd2894fb47ad2bef1b06aa94d45c3a66de603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuhrer, Timothy J</creatorcontrib><creatorcontrib>Snelgrove, Jordan</creatorcontrib><creatorcontrib>Corley, Cynthia A</creatorcontrib><creatorcontrib>Iacono, Scott T</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuhrer, Timothy J</au><au>Snelgrove, Jordan</au><au>Corley, Cynthia A</au><au>Iacono, Scott T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>124</volume><issue>49</issue><spage>10324</spage><epage>10329</epage><pages>10324-10329</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Interest within the scientific community in organic solar cells has been on the rise over the last two decades as researchers respond to increasing demands for alternative renewable energy sources. Fulvene, fullerene, and endohedral metallofullerene derivatives have individually shown great promise as efficient charge transfer agents. Despite the heavy demand for research in this area, there have been no studies reported to date that explore the electronic behavior of molecules containing both fullerene and fulvene groups. The lack of interest may be attributed to inherent limitations and inaccuracy in most density functional theory (DFT) band gap calculations for large molecules. Herein we present a systematic computational investigation of the band gaps and dipole moments of several test fullerene–fulvene molecules using a novel DFT method that has been modified to allow accurate computation of the band gaps of this class of molecules. Calculated results showed promising low band gap energies and attractive conductive properties for all fullerene–fulvene derivatives. This new DFT method can conceivably be an invaluable tool that can provide predictive insight into the suitability of similar high molecular weight materials for application in organic solar cell devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c06469</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2405-8744</orcidid><orcidid>https://orcid.org/0000-0002-2313-2618</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-12, Vol.124 (49), p.10324-10329
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2464149905
source ACS Publications
subjects A: New Tools and Methods in Experiment and Theory
title Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20Investigation%20of%20Fulvene-Derivatized%20Fullerenes%20as%20Candidates%20for%20Organic%20Solar%20Cells&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Fuhrer,%20Timothy%20J&rft.date=2020-12-10&rft.volume=124&rft.issue=49&rft.spage=10324&rft.epage=10329&rft.pages=10324-10329&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c06469&rft_dat=%3Cproquest_cross%3E2464149905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464149905&rft_id=info:pmid/&rfr_iscdi=true