Development of a test method to investigate mode II fracture and dissection of arteries
The current study presents the development and implementation of a bespoke experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fr...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-02, Vol.121, p.444-460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | |
container_start_page | 444 |
container_title | Acta biomaterialia |
container_volume | 121 |
creator | FitzGibbon, Brian McGarry, Patrick |
description | The current study presents the development and implementation of a bespoke experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II. We perform a detailed computational design of a bespoke experimental method (which we refer to as a shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in arteries. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the circumferential (c)-direction along the circumferential-axial (c-a) plane. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the bespoke test method results in pure mode II initiation and propagation. We demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered in the current study, along with our quantification of mode II fracture properties have significant implications for current understanding of the biomechanical conditions underlying aortic dissection.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.11.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464145723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120306760</els_id><sourcerecordid>2492315521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-5f4fb94551b2040ee51ed2997558cf7de64cbda5eda1b0ab3e6a1a63a75729943</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhoMoq6v7D0QCXvbSs6l8dHouC4v7NSB42cVjSCfVmmG6MybpAf-90VEPe9hTFcVTbxUPIefAFsCg_bJeWFf6EBec8TqCBePigJxAp7tGq7Y7rL2WvNGshWPyMec1Y6ID3n0gx0JwrmUnT8jtd9zhJm5HnAqNA7W0YC50xHIfPS2RhmlXB-HOFqRj9EhXKzqkenpOSO3kqQ85oyshTi_7qWAKmM_I0WA3GT-91lPy9-ePP1e_m-ubX6urb9eNk6ItjRrk0C-lUtBzJhmiAvR8udRKdW7QHlvpem8Vegs9s73A1oJthdVKV0yKU_J5n7tN8WGun5oxZIebjZ0wztlw2UqQFRYVvfwHXcc5TfW7Si25AKU4VEruKZdizgkHs01htOnRADPP4s3a7MWbZ_EGwLCX8IvX8Lkf0b8vvZmuwNc9gNXGLmAy2QWcHPqQqj7jY_j_hSekLJVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315521</pqid></control><display><type>article</type><title>Development of a test method to investigate mode II fracture and dissection of arteries</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>FitzGibbon, Brian ; McGarry, Patrick</creator><creatorcontrib>FitzGibbon, Brian ; McGarry, Patrick</creatorcontrib><description>The current study presents the development and implementation of a bespoke experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II. We perform a detailed computational design of a bespoke experimental method (which we refer to as a shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in arteries. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the circumferential (c)-direction along the circumferential-axial (c-a) plane. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the bespoke test method results in pure mode II initiation and propagation. We demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered in the current study, along with our quantification of mode II fracture properties have significant implications for current understanding of the biomechanical conditions underlying aortic dissection.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.11.023</identifier><identifier>PMID: 33227484</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aneurysm, Dissecting ; Animals ; Aorta ; Arterial dissection ; Arteries ; Biomechanics ; Computer applications ; Crack initiation ; Crack propagation ; Dissection ; Experimental fracture mechanics ; Experimental methods ; Fabrication ; Finite element ; Fracture strength ; Fractures, Bone ; Kinking ; Mechanical properties ; Peel tests ; Propagation ; Propagation modes ; Shear stress ; Sheep ; Soft tissue anisotropy ; Soft tissue fracture ; Stress, Mechanical ; Test methods</subject><ispartof>Acta biomaterialia, 2021-02, Vol.121, p.444-460</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-5f4fb94551b2040ee51ed2997558cf7de64cbda5eda1b0ab3e6a1a63a75729943</citedby><cites>FETCH-LOGICAL-c436t-5f4fb94551b2040ee51ed2997558cf7de64cbda5eda1b0ab3e6a1a63a75729943</cites><orcidid>0000-0002-7900-3735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120306760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33227484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FitzGibbon, Brian</creatorcontrib><creatorcontrib>McGarry, Patrick</creatorcontrib><title>Development of a test method to investigate mode II fracture and dissection of arteries</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The current study presents the development and implementation of a bespoke experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II. We perform a detailed computational design of a bespoke experimental method (which we refer to as a shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in arteries. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the circumferential (c)-direction along the circumferential-axial (c-a) plane. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the bespoke test method results in pure mode II initiation and propagation. We demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered in the current study, along with our quantification of mode II fracture properties have significant implications for current understanding of the biomechanical conditions underlying aortic dissection.
[Display omitted]</description><subject>Aneurysm, Dissecting</subject><subject>Animals</subject><subject>Aorta</subject><subject>Arterial dissection</subject><subject>Arteries</subject><subject>Biomechanics</subject><subject>Computer applications</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Dissection</subject><subject>Experimental fracture mechanics</subject><subject>Experimental methods</subject><subject>Fabrication</subject><subject>Finite element</subject><subject>Fracture strength</subject><subject>Fractures, Bone</subject><subject>Kinking</subject><subject>Mechanical properties</subject><subject>Peel tests</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Shear stress</subject><subject>Sheep</subject><subject>Soft tissue anisotropy</subject><subject>Soft tissue fracture</subject><subject>Stress, Mechanical</subject><subject>Test methods</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LJDEQhoMoq6v7D0QCXvbSs6l8dHouC4v7NSB42cVjSCfVmmG6MybpAf-90VEPe9hTFcVTbxUPIefAFsCg_bJeWFf6EBec8TqCBePigJxAp7tGq7Y7rL2WvNGshWPyMec1Y6ID3n0gx0JwrmUnT8jtd9zhJm5HnAqNA7W0YC50xHIfPS2RhmlXB-HOFqRj9EhXKzqkenpOSO3kqQ85oyshTi_7qWAKmM_I0WA3GT-91lPy9-ePP1e_m-ubX6urb9eNk6ItjRrk0C-lUtBzJhmiAvR8udRKdW7QHlvpem8Vegs9s73A1oJthdVKV0yKU_J5n7tN8WGun5oxZIebjZ0wztlw2UqQFRYVvfwHXcc5TfW7Si25AKU4VEruKZdizgkHs01htOnRADPP4s3a7MWbZ_EGwLCX8IvX8Lkf0b8vvZmuwNc9gNXGLmAy2QWcHPqQqj7jY_j_hSekLJVk</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>FitzGibbon, Brian</creator><creator>McGarry, Patrick</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7900-3735</orcidid></search><sort><creationdate>202102</creationdate><title>Development of a test method to investigate mode II fracture and dissection of arteries</title><author>FitzGibbon, Brian ; McGarry, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-5f4fb94551b2040ee51ed2997558cf7de64cbda5eda1b0ab3e6a1a63a75729943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aneurysm, Dissecting</topic><topic>Animals</topic><topic>Aorta</topic><topic>Arterial dissection</topic><topic>Arteries</topic><topic>Biomechanics</topic><topic>Computer applications</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Dissection</topic><topic>Experimental fracture mechanics</topic><topic>Experimental methods</topic><topic>Fabrication</topic><topic>Finite element</topic><topic>Fracture strength</topic><topic>Fractures, Bone</topic><topic>Kinking</topic><topic>Mechanical properties</topic><topic>Peel tests</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Shear stress</topic><topic>Sheep</topic><topic>Soft tissue anisotropy</topic><topic>Soft tissue fracture</topic><topic>Stress, Mechanical</topic><topic>Test methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FitzGibbon, Brian</creatorcontrib><creatorcontrib>McGarry, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FitzGibbon, Brian</au><au>McGarry, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a test method to investigate mode II fracture and dissection of arteries</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>121</volume><spage>444</spage><epage>460</epage><pages>444-460</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The current study presents the development and implementation of a bespoke experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II. We perform a detailed computational design of a bespoke experimental method (which we refer to as a shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in arteries. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the circumferential (c)-direction along the circumferential-axial (c-a) plane. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the bespoke test method results in pure mode II initiation and propagation. We demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered in the current study, along with our quantification of mode II fracture properties have significant implications for current understanding of the biomechanical conditions underlying aortic dissection.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33227484</pmid><doi>10.1016/j.actbio.2020.11.023</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7900-3735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-02, Vol.121, p.444-460 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2464145723 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aneurysm, Dissecting Animals Aorta Arterial dissection Arteries Biomechanics Computer applications Crack initiation Crack propagation Dissection Experimental fracture mechanics Experimental methods Fabrication Finite element Fracture strength Fractures, Bone Kinking Mechanical properties Peel tests Propagation Propagation modes Shear stress Sheep Soft tissue anisotropy Soft tissue fracture Stress, Mechanical Test methods |
title | Development of a test method to investigate mode II fracture and dissection of arteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20test%20method%20to%20investigate%20mode%20II%20fracture%20and%20dissection%20of%20arteries&rft.jtitle=Acta%20biomaterialia&rft.au=FitzGibbon,%20Brian&rft.date=2021-02&rft.volume=121&rft.spage=444&rft.epage=460&rft.pages=444-460&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.11.023&rft_dat=%3Cproquest_cross%3E2492315521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315521&rft_id=info:pmid/33227484&rft_els_id=S1742706120306760&rfr_iscdi=true |