Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis

Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2021-04, Vol.110, p.368-378
Hauptverfasser: Deng, Feiyue, Qiang, Yawen, Yang, Shaopu, Hao, Rujiang, Liu, Yongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue
container_start_page 368
container_title ISA transactions
container_volume 110
creator Deng, Feiyue
Qiang, Yawen
Yang, Shaopu
Hao, Rujiang
Liu, Yongqiang
description Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.
doi_str_mv 10.1016/j.isatra.2020.10.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463608181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057820304377</els_id><sourcerecordid>2463608181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</originalsourceid><addsrcrecordid>eNp9kMlKQzEUQIMoWoc_EMnSzasZ3rgRpDhBwYW6DrfJTU3pG0xSxb83r1WXrgKHc-8lh5Bzzqac8fJqNXUBooepYGJEUybzPTLhddVkCYl9MmGMNxkrqvqIHIewYoyJoqkPyZGUQkje8AnxzwP4gNTj4DFgFyG6vqO9pYlDi9E7TY3TIwX_RRcQ0NBkWNisI3XtADrSFqJ-c92S2t7TzzfEdcBIFwh-C7eqcbDs-uDCKTmwkISzn_eEvN7dvswesvnT_ePsZp5pWYqYWSkKNHVhoGkq0LkQXLNKVoJbrY01UAEaXWiUdd6UCw7C2kLkwJmBnEspT8jlbu_g-_cNhqhaFzSu19BhvwlK5KUsWc1rntR8p2rfh-DRqsG7Nv1XcabG2mqldrXVWHukqXYau_i5sFm0aP6GfvMm4XonjEE-HHoVtMNOo3EedVSmd_9f-Abhg5Vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463608181</pqid></control><display><type>article</type><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</creator><creatorcontrib>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</creatorcontrib><description>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2020.10.034</identifier><identifier>PMID: 33223191</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fault feature ; Parametric dictionary ; Sparse representation ; The Laplace wavelet ; Wheelset bearing</subject><ispartof>ISA transactions, 2021-04, Vol.110, p.368-378</ispartof><rights>2020 ISA</rights><rights>Copyright © 2020 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</citedby><cites>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</cites><orcidid>0000-0001-7114-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2020.10.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33223191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Feiyue</creatorcontrib><creatorcontrib>Qiang, Yawen</creatorcontrib><creatorcontrib>Yang, Shaopu</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Liu, Yongqiang</creatorcontrib><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</description><subject>Fault feature</subject><subject>Parametric dictionary</subject><subject>Sparse representation</subject><subject>The Laplace wavelet</subject><subject>Wheelset bearing</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlKQzEUQIMoWoc_EMnSzasZ3rgRpDhBwYW6DrfJTU3pG0xSxb83r1WXrgKHc-8lh5Bzzqac8fJqNXUBooepYGJEUybzPTLhddVkCYl9MmGMNxkrqvqIHIewYoyJoqkPyZGUQkje8AnxzwP4gNTj4DFgFyG6vqO9pYlDi9E7TY3TIwX_RRcQ0NBkWNisI3XtADrSFqJ-c92S2t7TzzfEdcBIFwh-C7eqcbDs-uDCKTmwkISzn_eEvN7dvswesvnT_ePsZp5pWYqYWSkKNHVhoGkq0LkQXLNKVoJbrY01UAEaXWiUdd6UCw7C2kLkwJmBnEspT8jlbu_g-_cNhqhaFzSu19BhvwlK5KUsWc1rntR8p2rfh-DRqsG7Nv1XcabG2mqldrXVWHukqXYau_i5sFm0aP6GfvMm4XonjEE-HHoVtMNOo3EedVSmd_9f-Abhg5Vc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Deng, Feiyue</creator><creator>Qiang, Yawen</creator><creator>Yang, Shaopu</creator><creator>Hao, Rujiang</creator><creator>Liu, Yongqiang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7114-0797</orcidid></search><sort><creationdate>202104</creationdate><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><author>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fault feature</topic><topic>Parametric dictionary</topic><topic>Sparse representation</topic><topic>The Laplace wavelet</topic><topic>Wheelset bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Feiyue</creatorcontrib><creatorcontrib>Qiang, Yawen</creatorcontrib><creatorcontrib>Yang, Shaopu</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Liu, Yongqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Feiyue</au><au>Qiang, Yawen</au><au>Yang, Shaopu</au><au>Hao, Rujiang</au><au>Liu, Yongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2021-04</date><risdate>2021</risdate><volume>110</volume><spage>368</spage><epage>378</epage><pages>368-378</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33223191</pmid><doi>10.1016/j.isatra.2020.10.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7114-0797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2021-04, Vol.110, p.368-378
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2463608181
source Access via ScienceDirect (Elsevier)
subjects Fault feature
Parametric dictionary
Sparse representation
The Laplace wavelet
Wheelset bearing
title Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20representation%20of%20parametric%20dictionary%20based%20on%20fault%20impact%20matching%20for%20wheelset%20bearing%20fault%20diagnosis&rft.jtitle=ISA%20transactions&rft.au=Deng,%20Feiyue&rft.date=2021-04&rft.volume=110&rft.spage=368&rft.epage=378&rft.pages=368-378&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2020.10.034&rft_dat=%3Cproquest_cross%3E2463608181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463608181&rft_id=info:pmid/33223191&rft_els_id=S0019057820304377&rfr_iscdi=true