Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis
Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect th...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2021-04, Vol.110, p.368-378 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | |
container_start_page | 368 |
container_title | ISA transactions |
container_volume | 110 |
creator | Deng, Feiyue Qiang, Yawen Yang, Shaopu Hao, Rujiang Liu, Yongqiang |
description | Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects. |
doi_str_mv | 10.1016/j.isatra.2020.10.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463608181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057820304377</els_id><sourcerecordid>2463608181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</originalsourceid><addsrcrecordid>eNp9kMlKQzEUQIMoWoc_EMnSzasZ3rgRpDhBwYW6DrfJTU3pG0xSxb83r1WXrgKHc-8lh5Bzzqac8fJqNXUBooepYGJEUybzPTLhddVkCYl9MmGMNxkrqvqIHIewYoyJoqkPyZGUQkje8AnxzwP4gNTj4DFgFyG6vqO9pYlDi9E7TY3TIwX_RRcQ0NBkWNisI3XtADrSFqJ-c92S2t7TzzfEdcBIFwh-C7eqcbDs-uDCKTmwkISzn_eEvN7dvswesvnT_ePsZp5pWYqYWSkKNHVhoGkq0LkQXLNKVoJbrY01UAEaXWiUdd6UCw7C2kLkwJmBnEspT8jlbu_g-_cNhqhaFzSu19BhvwlK5KUsWc1rntR8p2rfh-DRqsG7Nv1XcabG2mqldrXVWHukqXYau_i5sFm0aP6GfvMm4XonjEE-HHoVtMNOo3EedVSmd_9f-Abhg5Vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463608181</pqid></control><display><type>article</type><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</creator><creatorcontrib>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</creatorcontrib><description>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2020.10.034</identifier><identifier>PMID: 33223191</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Fault feature ; Parametric dictionary ; Sparse representation ; The Laplace wavelet ; Wheelset bearing</subject><ispartof>ISA transactions, 2021-04, Vol.110, p.368-378</ispartof><rights>2020 ISA</rights><rights>Copyright © 2020 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</citedby><cites>FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</cites><orcidid>0000-0001-7114-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2020.10.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33223191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Feiyue</creatorcontrib><creatorcontrib>Qiang, Yawen</creatorcontrib><creatorcontrib>Yang, Shaopu</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Liu, Yongqiang</creatorcontrib><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</description><subject>Fault feature</subject><subject>Parametric dictionary</subject><subject>Sparse representation</subject><subject>The Laplace wavelet</subject><subject>Wheelset bearing</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlKQzEUQIMoWoc_EMnSzasZ3rgRpDhBwYW6DrfJTU3pG0xSxb83r1WXrgKHc-8lh5Bzzqac8fJqNXUBooepYGJEUybzPTLhddVkCYl9MmGMNxkrqvqIHIewYoyJoqkPyZGUQkje8AnxzwP4gNTj4DFgFyG6vqO9pYlDi9E7TY3TIwX_RRcQ0NBkWNisI3XtADrSFqJ-c92S2t7TzzfEdcBIFwh-C7eqcbDs-uDCKTmwkISzn_eEvN7dvswesvnT_ePsZp5pWYqYWSkKNHVhoGkq0LkQXLNKVoJbrY01UAEaXWiUdd6UCw7C2kLkwJmBnEspT8jlbu_g-_cNhqhaFzSu19BhvwlK5KUsWc1rntR8p2rfh-DRqsG7Nv1XcabG2mqldrXVWHukqXYau_i5sFm0aP6GfvMm4XonjEE-HHoVtMNOo3EedVSmd_9f-Abhg5Vc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Deng, Feiyue</creator><creator>Qiang, Yawen</creator><creator>Yang, Shaopu</creator><creator>Hao, Rujiang</creator><creator>Liu, Yongqiang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7114-0797</orcidid></search><sort><creationdate>202104</creationdate><title>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</title><author>Deng, Feiyue ; Qiang, Yawen ; Yang, Shaopu ; Hao, Rujiang ; Liu, Yongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f325ed85da997ac4221c073721fccdfda7aedc5ce38496b1a2ff524a10da41333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fault feature</topic><topic>Parametric dictionary</topic><topic>Sparse representation</topic><topic>The Laplace wavelet</topic><topic>Wheelset bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Feiyue</creatorcontrib><creatorcontrib>Qiang, Yawen</creatorcontrib><creatorcontrib>Yang, Shaopu</creatorcontrib><creatorcontrib>Hao, Rujiang</creatorcontrib><creatorcontrib>Liu, Yongqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Feiyue</au><au>Qiang, Yawen</au><au>Yang, Shaopu</au><au>Hao, Rujiang</au><au>Liu, Yongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2021-04</date><risdate>2021</risdate><volume>110</volume><spage>368</spage><epage>378</epage><pages>368-378</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Wheelset bearing is one of the crucial rotating elements in the train bogie. Detection of wheelset bearing defect comes with many challenges due to complex wheel/rail excitation and the horrible working condition. The parametric dictionary sparse representation provides a practical path to detect the weak fault of wheelset bearing. However, the parametric dictionary obtained by the classical correlation filtering algorithm (CFA) is hard to match the analyzed signal’s underlying fault impact characteristic. A novel parametric dictionary design algorithm named fault impact matching algorithm (FIMA) combining Orthogonal matching pursuit (OMP) is proposed to address the problem in this paper. The core of the FIMA mainly comprises two stages: partial segmentation and global analysis. Two indexes, correlation function (CF) and kurtosis, are used to comprehensively evaluate the partial and global matching degree between the Laplace wavelet and the signal. The proposed method’s effectiveness is verified by the fault simulation analysis and the practical wheelset bearing fault signals (outer and inner race fault). Some comparison studies demonstrate that the proposed method outperforms the CFA–OMP, the K-SVD–OMP and some time–frequency decomposition methods, such as EWT and VMD, in detecting the bearing weak defects.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33223191</pmid><doi>10.1016/j.isatra.2020.10.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7114-0797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2021-04, Vol.110, p.368-378 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_2463608181 |
source | Access via ScienceDirect (Elsevier) |
subjects | Fault feature Parametric dictionary Sparse representation The Laplace wavelet Wheelset bearing |
title | Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20representation%20of%20parametric%20dictionary%20based%20on%20fault%20impact%20matching%20for%20wheelset%20bearing%20fault%20diagnosis&rft.jtitle=ISA%20transactions&rft.au=Deng,%20Feiyue&rft.date=2021-04&rft.volume=110&rft.spage=368&rft.epage=378&rft.pages=368-378&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2020.10.034&rft_dat=%3Cproquest_cross%3E2463608181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463608181&rft_id=info:pmid/33223191&rft_els_id=S0019057820304377&rfr_iscdi=true |