Modifying the Microenvironment of Epoxy Resin to Improve the Activity of Immobilized 7α-Hydroxysteroid Dehydrogenases

7α-Hydroxysteroid dehydrogenase (7α-HSDH) is one of the key enzymes in the catalytic reaction of taurochenodeoxycholic acid (TCDCA). To improve the activity of immobilized 7α-HSDH, the microenvironment of immobilized 7α-HSDH was modified with epoxy resin and ethanediamine (EDA). The amino-epoxy supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2021-04, Vol.193 (4), p.925-939
Hauptverfasser: Yang, Qiong, Li, Liuying, Wang, Bochu, Zhu, Liancai, Tan, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:7α-Hydroxysteroid dehydrogenase (7α-HSDH) is one of the key enzymes in the catalytic reaction of taurochenodeoxycholic acid (TCDCA). To improve the activity of immobilized 7α-HSDH, the microenvironment of immobilized 7α-HSDH was modified with epoxy resin and ethanediamine (EDA). The amino-epoxy support was characterized by Fourier transform infrared (FTIR), Spectrometer elemental analysis (EA), scanning electron microscopy (SEM), contact angle (CA), and Zetasizer. The effects of the immobilization of 7α-HSDH on the amino-epoxy resin and epoxy resin were studied. The results indicated that the relative activity of immobilized 7α-HSDH on the amino-epoxy resin increased by approximately 80%. Meanwhile, the immobilized 7α-HSDH showed favorable thermal stability and operational stability. The thermal stability of immobilized 7α-HSDH increased at temperatures ranging from 15 to 35 °C, while the relative activities of 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin retained 56.4% and 61.0%. After 6 cycles, the residual activities of the 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin were 81.4% and 89.5%, respectively.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-020-03473-w