Implications of scale dependence for cross‐study syntheses of biodiversity differences

Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Cross‐study syntheses may inflate these influences by collating studies that vary widely in the numbers and sizes of sampling plots. Here we evaluate sources of inaccuracy and imprecision in study‐level an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2021-02, Vol.24 (2), p.374-390
Hauptverfasser: Spake, Rebecca, Mori, Akira S., Beckmann, Michael, Martin, Philip A., Christie, Alec P., Duguid, Marlyse C., Doncaster, C. Patrick, Chase, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 2
container_start_page 374
container_title Ecology letters
container_volume 24
creator Spake, Rebecca
Mori, Akira S.
Beckmann, Michael
Martin, Philip A.
Christie, Alec P.
Duguid, Marlyse C.
Doncaster, C. Patrick
Chase, Jonathan
description Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Cross‐study syntheses may inflate these influences by collating studies that vary widely in the numbers and sizes of sampling plots. Here we evaluate sources of inaccuracy and imprecision in study‐level and cross‐study estimates of biodiversity differences, caused by within‐study grain and sample sizes, biodiversity measure, and choice of effect‐size metric. Samples from simulated communities of old‐growth and secondary forests demonstrated influences of all these parameters on the accuracy and precision of cross‐study effect sizes. In cross‐study synthesis by formal meta‐analysis, the metric of log response ratio applied to measures of species richness yielded better accuracy than the commonly used Hedges' g metric on species density, which dangerously combined higher precision with persistent bias. Full‐data analyses of the raw plot‐scale data using multilevel models were also susceptible to scale‐dependent bias. We demonstrate the challenge of detecting scale dependence in cross‐study synthesis, due to ubiquitous covariation between replication, variance and plot size. We propose solutions for diagnosing and minimising bias. We urge that empirical studies publish raw data to allow evaluation of covariation in cross‐study syntheses, and we recommend against using Hedges' g in biodiversity meta‐analyses. Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Here we demonstrate by simulation and empirical examination that cross‐study syntheses amplify within‐study scale bias when they incorporate scale‐dependent measures of within‐study variance. We provide guidance for treating scale dependence in cross‐study syntheses of biodiversity differences, and for appraising existing syntheses.
doi_str_mv 10.1111/ele.13641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463110618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463110618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4541-6dc5d784187e6a47fecc05777fc17d41aa8634d3cc1658d1b9556a494731b7803</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1uf2LHTEVUFKlViAalblNonwlVu2AkoG4_AM_IkuBc6IOHlePj86_gn5BLoCPwZY44jYILDEekDFzCkIY-PD3e27JEz59aUQjiRcEp6jIUgOKd9spwXdW5U2piqdEGVBU6lOQYaayw1lgqDrLKBspVz359frml1F7iubF7R4davTKXNO1pnmi7QJsvQbp65c3KSpbnDi_0ckJf72fP0cbh4ephP7xZDxSMOQ6FVpGXMIZYoUi4zVIpGUspMgdQc0jQWjGumFIgo1rCaRJF3Ey4ZrGRM2YDc7HJrW7216JqkME5hnqclVq1LQi4YABUQe3r9h66r1pZ-O6-kiOQkjKRXtzu1_bTFLKmtKVLbJUCTTd2JrzvZ1u3t1T6xXRWoD_K3Xw_GO_Bhcuz-T0pmi9ku8ge_G4nU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476579257</pqid></control><display><type>article</type><title>Implications of scale dependence for cross‐study syntheses of biodiversity differences</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Spake, Rebecca ; Mori, Akira S. ; Beckmann, Michael ; Martin, Philip A. ; Christie, Alec P. ; Duguid, Marlyse C. ; Doncaster, C. Patrick ; Chase, Jonathan</creator><contributor>Chase, Jonathan</contributor><creatorcontrib>Spake, Rebecca ; Mori, Akira S. ; Beckmann, Michael ; Martin, Philip A. ; Christie, Alec P. ; Duguid, Marlyse C. ; Doncaster, C. Patrick ; Chase, Jonathan ; Chase, Jonathan</creatorcontrib><description>Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Cross‐study syntheses may inflate these influences by collating studies that vary widely in the numbers and sizes of sampling plots. Here we evaluate sources of inaccuracy and imprecision in study‐level and cross‐study estimates of biodiversity differences, caused by within‐study grain and sample sizes, biodiversity measure, and choice of effect‐size metric. Samples from simulated communities of old‐growth and secondary forests demonstrated influences of all these parameters on the accuracy and precision of cross‐study effect sizes. In cross‐study synthesis by formal meta‐analysis, the metric of log response ratio applied to measures of species richness yielded better accuracy than the commonly used Hedges' g metric on species density, which dangerously combined higher precision with persistent bias. Full‐data analyses of the raw plot‐scale data using multilevel models were also susceptible to scale‐dependent bias. We demonstrate the challenge of detecting scale dependence in cross‐study synthesis, due to ubiquitous covariation between replication, variance and plot size. We propose solutions for diagnosing and minimising bias. We urge that empirical studies publish raw data to allow evaluation of covariation in cross‐study syntheses, and we recommend against using Hedges' g in biodiversity meta‐analyses. Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Here we demonstrate by simulation and empirical examination that cross‐study syntheses amplify within‐study scale bias when they incorporate scale‐dependent measures of within‐study variance. We provide guidance for treating scale dependence in cross‐study syntheses of biodiversity differences, and for appraising existing syntheses.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.13641</identifier><identifier>PMID: 33216440</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>accuracy ; Bias ; Biodiversity ; Collating ; Dependence ; effect size ; Empirical analysis ; Evaluation ; Forests ; grain ; Meta-analysis ; multilevel model ; Population density ; precision ; scale ; Species richness ; Synthesis</subject><ispartof>Ecology letters, 2021-02, Vol.24 (2), p.374-390</ispartof><rights>2020 The Authors. Ecology Letters published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Ecology Letters published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4541-6dc5d784187e6a47fecc05777fc17d41aa8634d3cc1658d1b9556a494731b7803</citedby><cites>FETCH-LOGICAL-c4541-6dc5d784187e6a47fecc05777fc17d41aa8634d3cc1658d1b9556a494731b7803</cites><orcidid>0000-0002-8422-1198 ; 0000-0003-4671-2225 ; 0000-0002-5678-265X ; 0000-0001-9406-0693 ; 0000-0002-8465-8410 ; 0000-0002-5346-8868 ; 0000-0003-1465-0947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.13641$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.13641$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33216440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chase, Jonathan</contributor><creatorcontrib>Spake, Rebecca</creatorcontrib><creatorcontrib>Mori, Akira S.</creatorcontrib><creatorcontrib>Beckmann, Michael</creatorcontrib><creatorcontrib>Martin, Philip A.</creatorcontrib><creatorcontrib>Christie, Alec P.</creatorcontrib><creatorcontrib>Duguid, Marlyse C.</creatorcontrib><creatorcontrib>Doncaster, C. Patrick</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><title>Implications of scale dependence for cross‐study syntheses of biodiversity differences</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Cross‐study syntheses may inflate these influences by collating studies that vary widely in the numbers and sizes of sampling plots. Here we evaluate sources of inaccuracy and imprecision in study‐level and cross‐study estimates of biodiversity differences, caused by within‐study grain and sample sizes, biodiversity measure, and choice of effect‐size metric. Samples from simulated communities of old‐growth and secondary forests demonstrated influences of all these parameters on the accuracy and precision of cross‐study effect sizes. In cross‐study synthesis by formal meta‐analysis, the metric of log response ratio applied to measures of species richness yielded better accuracy than the commonly used Hedges' g metric on species density, which dangerously combined higher precision with persistent bias. Full‐data analyses of the raw plot‐scale data using multilevel models were also susceptible to scale‐dependent bias. We demonstrate the challenge of detecting scale dependence in cross‐study synthesis, due to ubiquitous covariation between replication, variance and plot size. We propose solutions for diagnosing and minimising bias. We urge that empirical studies publish raw data to allow evaluation of covariation in cross‐study syntheses, and we recommend against using Hedges' g in biodiversity meta‐analyses. Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Here we demonstrate by simulation and empirical examination that cross‐study syntheses amplify within‐study scale bias when they incorporate scale‐dependent measures of within‐study variance. We provide guidance for treating scale dependence in cross‐study syntheses of biodiversity differences, and for appraising existing syntheses.</description><subject>accuracy</subject><subject>Bias</subject><subject>Biodiversity</subject><subject>Collating</subject><subject>Dependence</subject><subject>effect size</subject><subject>Empirical analysis</subject><subject>Evaluation</subject><subject>Forests</subject><subject>grain</subject><subject>Meta-analysis</subject><subject>multilevel model</subject><subject>Population density</subject><subject>precision</subject><subject>scale</subject><subject>Species richness</subject><subject>Synthesis</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1uf2LHTEVUFKlViAalblNonwlVu2AkoG4_AM_IkuBc6IOHlePj86_gn5BLoCPwZY44jYILDEekDFzCkIY-PD3e27JEz59aUQjiRcEp6jIUgOKd9spwXdW5U2piqdEGVBU6lOQYaayw1lgqDrLKBspVz359frml1F7iubF7R4davTKXNO1pnmi7QJsvQbp65c3KSpbnDi_0ckJf72fP0cbh4ephP7xZDxSMOQ6FVpGXMIZYoUi4zVIpGUspMgdQc0jQWjGumFIgo1rCaRJF3Ey4ZrGRM2YDc7HJrW7216JqkME5hnqclVq1LQi4YABUQe3r9h66r1pZ-O6-kiOQkjKRXtzu1_bTFLKmtKVLbJUCTTd2JrzvZ1u3t1T6xXRWoD_K3Xw_GO_Bhcuz-T0pmi9ku8ge_G4nU</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Spake, Rebecca</creator><creator>Mori, Akira S.</creator><creator>Beckmann, Michael</creator><creator>Martin, Philip A.</creator><creator>Christie, Alec P.</creator><creator>Duguid, Marlyse C.</creator><creator>Doncaster, C. Patrick</creator><creator>Chase, Jonathan</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8422-1198</orcidid><orcidid>https://orcid.org/0000-0003-4671-2225</orcidid><orcidid>https://orcid.org/0000-0002-5678-265X</orcidid><orcidid>https://orcid.org/0000-0001-9406-0693</orcidid><orcidid>https://orcid.org/0000-0002-8465-8410</orcidid><orcidid>https://orcid.org/0000-0002-5346-8868</orcidid><orcidid>https://orcid.org/0000-0003-1465-0947</orcidid></search><sort><creationdate>202102</creationdate><title>Implications of scale dependence for cross‐study syntheses of biodiversity differences</title><author>Spake, Rebecca ; Mori, Akira S. ; Beckmann, Michael ; Martin, Philip A. ; Christie, Alec P. ; Duguid, Marlyse C. ; Doncaster, C. Patrick ; Chase, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4541-6dc5d784187e6a47fecc05777fc17d41aa8634d3cc1658d1b9556a494731b7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>accuracy</topic><topic>Bias</topic><topic>Biodiversity</topic><topic>Collating</topic><topic>Dependence</topic><topic>effect size</topic><topic>Empirical analysis</topic><topic>Evaluation</topic><topic>Forests</topic><topic>grain</topic><topic>Meta-analysis</topic><topic>multilevel model</topic><topic>Population density</topic><topic>precision</topic><topic>scale</topic><topic>Species richness</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spake, Rebecca</creatorcontrib><creatorcontrib>Mori, Akira S.</creatorcontrib><creatorcontrib>Beckmann, Michael</creatorcontrib><creatorcontrib>Martin, Philip A.</creatorcontrib><creatorcontrib>Christie, Alec P.</creatorcontrib><creatorcontrib>Duguid, Marlyse C.</creatorcontrib><creatorcontrib>Doncaster, C. Patrick</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spake, Rebecca</au><au>Mori, Akira S.</au><au>Beckmann, Michael</au><au>Martin, Philip A.</au><au>Christie, Alec P.</au><au>Duguid, Marlyse C.</au><au>Doncaster, C. Patrick</au><au>Chase, Jonathan</au><au>Chase, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of scale dependence for cross‐study syntheses of biodiversity differences</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2021-02</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>374</spage><epage>390</epage><pages>374-390</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Cross‐study syntheses may inflate these influences by collating studies that vary widely in the numbers and sizes of sampling plots. Here we evaluate sources of inaccuracy and imprecision in study‐level and cross‐study estimates of biodiversity differences, caused by within‐study grain and sample sizes, biodiversity measure, and choice of effect‐size metric. Samples from simulated communities of old‐growth and secondary forests demonstrated influences of all these parameters on the accuracy and precision of cross‐study effect sizes. In cross‐study synthesis by formal meta‐analysis, the metric of log response ratio applied to measures of species richness yielded better accuracy than the commonly used Hedges' g metric on species density, which dangerously combined higher precision with persistent bias. Full‐data analyses of the raw plot‐scale data using multilevel models were also susceptible to scale‐dependent bias. We demonstrate the challenge of detecting scale dependence in cross‐study synthesis, due to ubiquitous covariation between replication, variance and plot size. We propose solutions for diagnosing and minimising bias. We urge that empirical studies publish raw data to allow evaluation of covariation in cross‐study syntheses, and we recommend against using Hedges' g in biodiversity meta‐analyses. Biodiversity studies are sensitive to well‐recognised temporal and spatial scale dependencies. Here we demonstrate by simulation and empirical examination that cross‐study syntheses amplify within‐study scale bias when they incorporate scale‐dependent measures of within‐study variance. We provide guidance for treating scale dependence in cross‐study syntheses of biodiversity differences, and for appraising existing syntheses.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33216440</pmid><doi>10.1111/ele.13641</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8422-1198</orcidid><orcidid>https://orcid.org/0000-0003-4671-2225</orcidid><orcidid>https://orcid.org/0000-0002-5678-265X</orcidid><orcidid>https://orcid.org/0000-0001-9406-0693</orcidid><orcidid>https://orcid.org/0000-0002-8465-8410</orcidid><orcidid>https://orcid.org/0000-0002-5346-8868</orcidid><orcidid>https://orcid.org/0000-0003-1465-0947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2021-02, Vol.24 (2), p.374-390
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_2463110618
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects accuracy
Bias
Biodiversity
Collating
Dependence
effect size
Empirical analysis
Evaluation
Forests
grain
Meta-analysis
multilevel model
Population density
precision
scale
Species richness
Synthesis
title Implications of scale dependence for cross‐study syntheses of biodiversity differences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20scale%20dependence%20for%20cross%E2%80%90study%20syntheses%20of%20biodiversity%20differences&rft.jtitle=Ecology%20letters&rft.au=Spake,%20Rebecca&rft.date=2021-02&rft.volume=24&rft.issue=2&rft.spage=374&rft.epage=390&rft.pages=374-390&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.13641&rft_dat=%3Cproquest_cross%3E2463110618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476579257&rft_id=info:pmid/33216440&rfr_iscdi=true