Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy

Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2021-04, Vol.53 (4), p.1066-1079
Hauptverfasser: Zhao, Ying, Wu, Jingjun, Zhang, Qinhe, Hua, Zhengyu, Qi, Wenjing, Wang, Nan, Lin, Tao, Sheng, Liuji, Cui, Dahua, Liu, Jinghong, Song, Qingwei, Li, Xin, Wu, Tingfan, Guo, Yan, Cui, Jingjing, Liu, Ailian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 4
container_start_page 1066
container_title Journal of magnetic resonance imaging
container_volume 53
creator Zhao, Ying
Wu, Jingjun
Zhang, Qinhe
Hua, Zhengyu
Qi, Wenjing
Wang, Nan
Lin, Tao
Sheng, Liuji
Cui, Dahua
Liu, Jinghong
Song, Qingwei
Li, Xin
Wu, Tingfan
Guo, Yan
Cui, Jingjing
Liu, Ailian
description Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. Study Type Retrospective. Population In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. Field Strength/Sequence 1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI). Assessment In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. Statistical Tests Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). Results The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful. Data Conclusion The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. Evidence Level 4. Technical Efficacy Stage 4.
doi_str_mv 10.1002/jmri.27424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463108082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501869694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCs7pxb8g4EWEzqRNfx3nmDrZUIaey2uaSEbazJcW6R_g_21mPXnwlEfyeSF53yC4ZHTGKI1udw3qWZTxiB8FE5ZEURgleXrsa5rEIctpdhqcObejlBYFTybB1xZqbRstHJm3YAanHbkDJ2tiW7LpTaf3gNDIDrUgm-2KKIvkBWWtRafbd7IENAPZStEjylZIolvyKPfQWSGN6Q0gWQAK3doGyFx10ncDdhrMyKTobDOcBycKjJMXv-s0eLtfvi4ew_Xzw2oxX4cijjkP80pmgqkMOKtUpgol_BerDDJR-bpI0izNFY-rOPXnjNacxrzOC-EdVeD3p8H1eO8e7UcvXVc22h0eCq20vSsjnsaM5jSPPL36Q3e2Rz8irxLK8rRIC-7VzagEWudQqnKPugEcSkbLQyLlIZHyJxGP2Yg_tZHDP7J88pMee74B6oOQBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501869694</pqid></control><display><type>article</type><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><source>Access via Wiley Online Library</source><creator>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</creator><creatorcontrib>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</creatorcontrib><description>Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. Study Type Retrospective. Population In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. Field Strength/Sequence 1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI). Assessment In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. Statistical Tests Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). Results The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful. Data Conclusion The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. Evidence Level 4. Technical Efficacy Stage 4.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27424</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Confidence intervals ; Decision analysis ; Diffusion rate ; Feature extraction ; Field strength ; Hepatectomy ; Hepatocellular carcinoma ; Liver cancer ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Nomograms ; Patients ; Performance evaluation ; Population studies ; Predictions ; Radiomics ; recurrence ; Regression analysis ; Risk analysis ; Risk factors ; Statistical analysis ; Statistical tests</subject><ispartof>Journal of magnetic resonance imaging, 2021-04, Vol.53 (4), p.1066-1079</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</citedby><cites>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</cites><orcidid>0000-0002-3862-7074 ; 0000-0002-7288-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhang, Qinhe</creatorcontrib><creatorcontrib>Hua, Zhengyu</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Sheng, Liuji</creatorcontrib><creatorcontrib>Cui, Dahua</creatorcontrib><creatorcontrib>Liu, Jinghong</creatorcontrib><creatorcontrib>Song, Qingwei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wu, Tingfan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Liu, Ailian</creatorcontrib><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><title>Journal of magnetic resonance imaging</title><description>Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. Study Type Retrospective. Population In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. Field Strength/Sequence 1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI). Assessment In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. Statistical Tests Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). Results The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful. Data Conclusion The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. Evidence Level 4. Technical Efficacy Stage 4.</description><subject>Confidence intervals</subject><subject>Decision analysis</subject><subject>Diffusion rate</subject><subject>Feature extraction</subject><subject>Field strength</subject><subject>Hepatectomy</subject><subject>Hepatocellular carcinoma</subject><subject>Liver cancer</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Nomograms</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Population studies</subject><subject>Predictions</subject><subject>Radiomics</subject><subject>recurrence</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_AiCs7pxb8g4EWEzqRNfx3nmDrZUIaey2uaSEbazJcW6R_g_21mPXnwlEfyeSF53yC4ZHTGKI1udw3qWZTxiB8FE5ZEURgleXrsa5rEIctpdhqcObejlBYFTybB1xZqbRstHJm3YAanHbkDJ2tiW7LpTaf3gNDIDrUgm-2KKIvkBWWtRafbd7IENAPZStEjylZIolvyKPfQWSGN6Q0gWQAK3doGyFx10ncDdhrMyKTobDOcBycKjJMXv-s0eLtfvi4ew_Xzw2oxX4cijjkP80pmgqkMOKtUpgol_BerDDJR-bpI0izNFY-rOPXnjNacxrzOC-EdVeD3p8H1eO8e7UcvXVc22h0eCq20vSsjnsaM5jSPPL36Q3e2Rz8irxLK8rRIC-7VzagEWudQqnKPugEcSkbLQyLlIZHyJxGP2Yg_tZHDP7J88pMee74B6oOQBA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zhao, Ying</creator><creator>Wu, Jingjun</creator><creator>Zhang, Qinhe</creator><creator>Hua, Zhengyu</creator><creator>Qi, Wenjing</creator><creator>Wang, Nan</creator><creator>Lin, Tao</creator><creator>Sheng, Liuji</creator><creator>Cui, Dahua</creator><creator>Liu, Jinghong</creator><creator>Song, Qingwei</creator><creator>Li, Xin</creator><creator>Wu, Tingfan</creator><creator>Guo, Yan</creator><creator>Cui, Jingjing</creator><creator>Liu, Ailian</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3862-7074</orcidid><orcidid>https://orcid.org/0000-0002-7288-8227</orcidid></search><sort><creationdate>202104</creationdate><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><author>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confidence intervals</topic><topic>Decision analysis</topic><topic>Diffusion rate</topic><topic>Feature extraction</topic><topic>Field strength</topic><topic>Hepatectomy</topic><topic>Hepatocellular carcinoma</topic><topic>Liver cancer</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Nomograms</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Population studies</topic><topic>Predictions</topic><topic>Radiomics</topic><topic>recurrence</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhang, Qinhe</creatorcontrib><creatorcontrib>Hua, Zhengyu</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Sheng, Liuji</creatorcontrib><creatorcontrib>Cui, Dahua</creatorcontrib><creatorcontrib>Liu, Jinghong</creatorcontrib><creatorcontrib>Song, Qingwei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wu, Tingfan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Liu, Ailian</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying</au><au>Wu, Jingjun</au><au>Zhang, Qinhe</au><au>Hua, Zhengyu</au><au>Qi, Wenjing</au><au>Wang, Nan</au><au>Lin, Tao</au><au>Sheng, Liuji</au><au>Cui, Dahua</au><au>Liu, Jinghong</au><au>Song, Qingwei</au><au>Li, Xin</au><au>Wu, Tingfan</au><au>Guo, Yan</au><au>Cui, Jingjing</au><au>Liu, Ailian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><date>2021-04</date><risdate>2021</risdate><volume>53</volume><issue>4</issue><spage>1066</spage><epage>1079</epage><pages>1066-1079</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. Study Type Retrospective. Population In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. Field Strength/Sequence 1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI). Assessment In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. Statistical Tests Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). Results The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful. Data Conclusion The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. Evidence Level 4. Technical Efficacy Stage 4.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jmri.27424</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3862-7074</orcidid><orcidid>https://orcid.org/0000-0002-7288-8227</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2021-04, Vol.53 (4), p.1066-1079
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2463108082
source Access via Wiley Online Library
subjects Confidence intervals
Decision analysis
Diffusion rate
Feature extraction
Field strength
Hepatectomy
Hepatocellular carcinoma
Liver cancer
Magnetic resonance imaging
Mathematical models
Medical imaging
Nomograms
Patients
Performance evaluation
Population studies
Predictions
Radiomics
recurrence
Regression analysis
Risk analysis
Risk factors
Statistical analysis
Statistical tests
title Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20Analysis%20Based%20on%20Multiparametric%20MRI%20for%20Predicting%20Early%20Recurrence%20in%20Hepatocellular%20Carcinoma%20After%20Partial%20Hepatectomy&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zhao,%20Ying&rft.date=2021-04&rft.volume=53&rft.issue=4&rft.spage=1066&rft.epage=1079&rft.pages=1066-1079&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27424&rft_dat=%3Cproquest_cross%3E2501869694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501869694&rft_id=info:pmid/&rfr_iscdi=true