Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy
Background Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. Purpose To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HC...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2021-04, Vol.53 (4), p.1066-1079 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 4 |
container_start_page | 1066 |
container_title | Journal of magnetic resonance imaging |
container_volume | 53 |
creator | Zhao, Ying Wu, Jingjun Zhang, Qinhe Hua, Zhengyu Qi, Wenjing Wang, Nan Lin, Tao Sheng, Liuji Cui, Dahua Liu, Jinghong Song, Qingwei Li, Xin Wu, Tingfan Guo, Yan Cui, Jingjing Liu, Ailian |
description | Background
Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance.
Purpose
To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy.
Study Type
Retrospective.
Population
In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts.
Field Strength/Sequence
1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI).
Assessment
In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established.
Statistical Tests
Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA).
Results
The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful.
Data Conclusion
The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning.
Evidence Level
4.
Technical Efficacy
Stage 4. |
doi_str_mv | 10.1002/jmri.27424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463108082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501869694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AiCs7pxb8g4EWEzqRNfx3nmDrZUIaey2uaSEbazJcW6R_g_21mPXnwlEfyeSF53yC4ZHTGKI1udw3qWZTxiB8FE5ZEURgleXrsa5rEIctpdhqcObejlBYFTybB1xZqbRstHJm3YAanHbkDJ2tiW7LpTaf3gNDIDrUgm-2KKIvkBWWtRafbd7IENAPZStEjylZIolvyKPfQWSGN6Q0gWQAK3doGyFx10ncDdhrMyKTobDOcBycKjJMXv-s0eLtfvi4ew_Xzw2oxX4cijjkP80pmgqkMOKtUpgol_BerDDJR-bpI0izNFY-rOPXnjNacxrzOC-EdVeD3p8H1eO8e7UcvXVc22h0eCq20vSsjnsaM5jSPPL36Q3e2Rz8irxLK8rRIC-7VzagEWudQqnKPugEcSkbLQyLlIZHyJxGP2Yg_tZHDP7J88pMee74B6oOQBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501869694</pqid></control><display><type>article</type><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><source>Access via Wiley Online Library</source><creator>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</creator><creatorcontrib>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</creatorcontrib><description>Background
Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance.
Purpose
To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy.
Study Type
Retrospective.
Population
In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts.
Field Strength/Sequence
1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI).
Assessment
In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established.
Statistical Tests
Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA).
Results
The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful.
Data Conclusion
The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning.
Evidence Level
4.
Technical Efficacy
Stage 4.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27424</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Confidence intervals ; Decision analysis ; Diffusion rate ; Feature extraction ; Field strength ; Hepatectomy ; Hepatocellular carcinoma ; Liver cancer ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Nomograms ; Patients ; Performance evaluation ; Population studies ; Predictions ; Radiomics ; recurrence ; Regression analysis ; Risk analysis ; Risk factors ; Statistical analysis ; Statistical tests</subject><ispartof>Journal of magnetic resonance imaging, 2021-04, Vol.53 (4), p.1066-1079</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2021 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</citedby><cites>FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</cites><orcidid>0000-0002-3862-7074 ; 0000-0002-7288-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhang, Qinhe</creatorcontrib><creatorcontrib>Hua, Zhengyu</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Sheng, Liuji</creatorcontrib><creatorcontrib>Cui, Dahua</creatorcontrib><creatorcontrib>Liu, Jinghong</creatorcontrib><creatorcontrib>Song, Qingwei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wu, Tingfan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Liu, Ailian</creatorcontrib><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><title>Journal of magnetic resonance imaging</title><description>Background
Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance.
Purpose
To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy.
Study Type
Retrospective.
Population
In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts.
Field Strength/Sequence
1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI).
Assessment
In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established.
Statistical Tests
Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA).
Results
The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful.
Data Conclusion
The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning.
Evidence Level
4.
Technical Efficacy
Stage 4.</description><subject>Confidence intervals</subject><subject>Decision analysis</subject><subject>Diffusion rate</subject><subject>Feature extraction</subject><subject>Field strength</subject><subject>Hepatectomy</subject><subject>Hepatocellular carcinoma</subject><subject>Liver cancer</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Nomograms</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Population studies</subject><subject>Predictions</subject><subject>Radiomics</subject><subject>recurrence</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90c9LwzAUB_AiCs7pxb8g4EWEzqRNfx3nmDrZUIaey2uaSEbazJcW6R_g_21mPXnwlEfyeSF53yC4ZHTGKI1udw3qWZTxiB8FE5ZEURgleXrsa5rEIctpdhqcObejlBYFTybB1xZqbRstHJm3YAanHbkDJ2tiW7LpTaf3gNDIDrUgm-2KKIvkBWWtRafbd7IENAPZStEjylZIolvyKPfQWSGN6Q0gWQAK3doGyFx10ncDdhrMyKTobDOcBycKjJMXv-s0eLtfvi4ew_Xzw2oxX4cijjkP80pmgqkMOKtUpgol_BerDDJR-bpI0izNFY-rOPXnjNacxrzOC-EdVeD3p8H1eO8e7UcvXVc22h0eCq20vSsjnsaM5jSPPL36Q3e2Rz8irxLK8rRIC-7VzagEWudQqnKPugEcSkbLQyLlIZHyJxGP2Yg_tZHDP7J88pMee74B6oOQBA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zhao, Ying</creator><creator>Wu, Jingjun</creator><creator>Zhang, Qinhe</creator><creator>Hua, Zhengyu</creator><creator>Qi, Wenjing</creator><creator>Wang, Nan</creator><creator>Lin, Tao</creator><creator>Sheng, Liuji</creator><creator>Cui, Dahua</creator><creator>Liu, Jinghong</creator><creator>Song, Qingwei</creator><creator>Li, Xin</creator><creator>Wu, Tingfan</creator><creator>Guo, Yan</creator><creator>Cui, Jingjing</creator><creator>Liu, Ailian</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3862-7074</orcidid><orcidid>https://orcid.org/0000-0002-7288-8227</orcidid></search><sort><creationdate>202104</creationdate><title>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</title><author>Zhao, Ying ; Wu, Jingjun ; Zhang, Qinhe ; Hua, Zhengyu ; Qi, Wenjing ; Wang, Nan ; Lin, Tao ; Sheng, Liuji ; Cui, Dahua ; Liu, Jinghong ; Song, Qingwei ; Li, Xin ; Wu, Tingfan ; Guo, Yan ; Cui, Jingjing ; Liu, Ailian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-8be7c1f7a41bf7f9fc152b7a7cb9fc956768f43b361bf10d4034d89cfc10fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confidence intervals</topic><topic>Decision analysis</topic><topic>Diffusion rate</topic><topic>Feature extraction</topic><topic>Field strength</topic><topic>Hepatectomy</topic><topic>Hepatocellular carcinoma</topic><topic>Liver cancer</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Nomograms</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Population studies</topic><topic>Predictions</topic><topic>Radiomics</topic><topic>recurrence</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ying</creatorcontrib><creatorcontrib>Wu, Jingjun</creatorcontrib><creatorcontrib>Zhang, Qinhe</creatorcontrib><creatorcontrib>Hua, Zhengyu</creatorcontrib><creatorcontrib>Qi, Wenjing</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Sheng, Liuji</creatorcontrib><creatorcontrib>Cui, Dahua</creatorcontrib><creatorcontrib>Liu, Jinghong</creatorcontrib><creatorcontrib>Song, Qingwei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wu, Tingfan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Liu, Ailian</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ying</au><au>Wu, Jingjun</au><au>Zhang, Qinhe</au><au>Hua, Zhengyu</au><au>Qi, Wenjing</au><au>Wang, Nan</au><au>Lin, Tao</au><au>Sheng, Liuji</au><au>Cui, Dahua</au><au>Liu, Jinghong</au><au>Song, Qingwei</au><au>Li, Xin</au><au>Wu, Tingfan</au><au>Guo, Yan</au><au>Cui, Jingjing</au><au>Liu, Ailian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><date>2021-04</date><risdate>2021</risdate><volume>53</volume><issue>4</issue><spage>1066</spage><epage>1079</epage><pages>1066-1079</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance.
Purpose
To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy.
Study Type
Retrospective.
Population
In all, 113 HCC patients (ER, n = 58 vs. non‐ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts.
Field Strength/Sequence
1.5T or 3.0T, gradient‐recalled‐echo in‐phase T1‐weighted imaging (I‐T1WI) and opposed‐phase T1WI (O‐T1WI), fast spin‐echo T2‐weighted imaging (T2WI), spin‐echo planar diffusion‐weighted imaging (DWI), and gradient‐recalled‐echo contrast‐enhanced MRI (CE‐MRI).
Assessment
In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic‐radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established.
Statistical Tests
Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA).
Results
The radiomics model based on I‐T1WI, O‐T1WI, T2WI, and CE‐MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598–0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756–0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577–0.907). DCA demonstrated that the combined nomogram was clinically useful.
Data Conclusion
The mpMRI‐based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning.
Evidence Level
4.
Technical Efficacy
Stage 4.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jmri.27424</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3862-7074</orcidid><orcidid>https://orcid.org/0000-0002-7288-8227</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2021-04, Vol.53 (4), p.1066-1079 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_2463108082 |
source | Access via Wiley Online Library |
subjects | Confidence intervals Decision analysis Diffusion rate Feature extraction Field strength Hepatectomy Hepatocellular carcinoma Liver cancer Magnetic resonance imaging Mathematical models Medical imaging Nomograms Patients Performance evaluation Population studies Predictions Radiomics recurrence Regression analysis Risk analysis Risk factors Statistical analysis Statistical tests |
title | Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20Analysis%20Based%20on%20Multiparametric%20MRI%20for%20Predicting%20Early%20Recurrence%20in%20Hepatocellular%20Carcinoma%20After%20Partial%20Hepatectomy&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zhao,%20Ying&rft.date=2021-04&rft.volume=53&rft.issue=4&rft.spage=1066&rft.epage=1079&rft.pages=1066-1079&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27424&rft_dat=%3Cproquest_cross%3E2501869694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501869694&rft_id=info:pmid/&rfr_iscdi=true |