Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide
β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive fe...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2021-05, Vol.65, p.167-177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | |
container_start_page | 167 |
container_title | Metabolic engineering |
container_volume | 65 |
creator | Shoji, Shinichiro Yamaji, Taiki Makino, Harumi Ishii, Jun Kondo, Akihiko |
description | β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l−1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
•Selective production of β-nicotinamide mononucleotide in E. coli.•Expression of PnuC from Bacillus mycoides realizes extracellular production of β-nicotinamide mononucleotide.•Multiple integration and balancing gene expression of identified components improve production.•Rational metabolic engineering results in 6.79 g l−1 β-nicotinamide mononucleotide production. |
doi_str_mv | 10.1016/j.ymben.2020.11.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463107935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717620301762</els_id><sourcerecordid>2463107935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-67f08de96f009629be8e6f97887e93dec5eb643148bf2253eb598035c05abf3f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMotlZ_gSA5emnNY185eJDiCype9Bx2k0lJ2U1qslvovze1teDF0zz4JjP5ELqmZEYJLe5Ws23XgJsxwlKHzgipTtCYElFMS1plp8e8LEboIsYVIZTmgp6jEeeMkYyRMTJv0NeNb63CGqJdOmx8wBFaUL3dAF4Hr4eUeoe9wc4q31tXd1YD7rzzblAtpFYqTfAdXraD8hFw7fQf-BKdmbqNcHWIE_T59Pgxf5ku3p9f5w-LqeK56KdFaUilQRSGpNOZaKCCwoiyqkoQXIPKoSkyTrOqMYzlHJpcVITniuR1Y7jhE3S7fzfd_TVA7GVno4K2rR34IUqWFZySUvA8oXyPquBjDGDkOtiuDltJidwJliv5I1juBEtKZRKcpm4OC4amA32c-TWagPs9AOmbGwtBRmXBKdA2JKdSe_vvgm-XVY8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463107935</pqid></control><display><type>article</type><title>Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shoji, Shinichiro ; Yamaji, Taiki ; Makino, Harumi ; Ishii, Jun ; Kondo, Akihiko</creator><creatorcontrib>Shoji, Shinichiro ; Yamaji, Taiki ; Makino, Harumi ; Ishii, Jun ; Kondo, Akihiko</creatorcontrib><description>β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l−1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
•Selective production of β-nicotinamide mononucleotide in E. coli.•Expression of PnuC from Bacillus mycoides realizes extracellular production of β-nicotinamide mononucleotide.•Multiple integration and balancing gene expression of identified components improve production.•Rational metabolic engineering results in 6.79 g l−1 β-nicotinamide mononucleotide production.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2020.11.008</identifier><identifier>PMID: 33220420</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Metabolic engineering ; Nucleotide ; Nutraceutical ; Synthetic metabolism ; Transporter ; Whole-cell biocatalyst</subject><ispartof>Metabolic engineering, 2021-05, Vol.65, p.167-177</ispartof><rights>2020 International Metabolic Engineering Society</rights><rights>Copyright © 2020 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-67f08de96f009629be8e6f97887e93dec5eb643148bf2253eb598035c05abf3f3</citedby><cites>FETCH-LOGICAL-c359t-67f08de96f009629be8e6f97887e93dec5eb643148bf2253eb598035c05abf3f3</cites><orcidid>0000-0003-2568-515X ; 0000-0003-1229-1901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2020.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33220420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoji, Shinichiro</creatorcontrib><creatorcontrib>Yamaji, Taiki</creatorcontrib><creatorcontrib>Makino, Harumi</creatorcontrib><creatorcontrib>Ishii, Jun</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><title>Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l−1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
•Selective production of β-nicotinamide mononucleotide in E. coli.•Expression of PnuC from Bacillus mycoides realizes extracellular production of β-nicotinamide mononucleotide.•Multiple integration and balancing gene expression of identified components improve production.•Rational metabolic engineering results in 6.79 g l−1 β-nicotinamide mononucleotide production.</description><subject>Metabolic engineering</subject><subject>Nucleotide</subject><subject>Nutraceutical</subject><subject>Synthetic metabolism</subject><subject>Transporter</subject><subject>Whole-cell biocatalyst</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMotlZ_gSA5emnNY185eJDiCype9Bx2k0lJ2U1qslvovze1teDF0zz4JjP5ELqmZEYJLe5Ws23XgJsxwlKHzgipTtCYElFMS1plp8e8LEboIsYVIZTmgp6jEeeMkYyRMTJv0NeNb63CGqJdOmx8wBFaUL3dAF4Hr4eUeoe9wc4q31tXd1YD7rzzblAtpFYqTfAdXraD8hFw7fQf-BKdmbqNcHWIE_T59Pgxf5ku3p9f5w-LqeK56KdFaUilQRSGpNOZaKCCwoiyqkoQXIPKoSkyTrOqMYzlHJpcVITniuR1Y7jhE3S7fzfd_TVA7GVno4K2rR34IUqWFZySUvA8oXyPquBjDGDkOtiuDltJidwJliv5I1juBEtKZRKcpm4OC4amA32c-TWagPs9AOmbGwtBRmXBKdA2JKdSe_vvgm-XVY8o</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Shoji, Shinichiro</creator><creator>Yamaji, Taiki</creator><creator>Makino, Harumi</creator><creator>Ishii, Jun</creator><creator>Kondo, Akihiko</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2568-515X</orcidid><orcidid>https://orcid.org/0000-0003-1229-1901</orcidid></search><sort><creationdate>202105</creationdate><title>Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide</title><author>Shoji, Shinichiro ; Yamaji, Taiki ; Makino, Harumi ; Ishii, Jun ; Kondo, Akihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-67f08de96f009629be8e6f97887e93dec5eb643148bf2253eb598035c05abf3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Metabolic engineering</topic><topic>Nucleotide</topic><topic>Nutraceutical</topic><topic>Synthetic metabolism</topic><topic>Transporter</topic><topic>Whole-cell biocatalyst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoji, Shinichiro</creatorcontrib><creatorcontrib>Yamaji, Taiki</creatorcontrib><creatorcontrib>Makino, Harumi</creatorcontrib><creatorcontrib>Ishii, Jun</creatorcontrib><creatorcontrib>Kondo, Akihiko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoji, Shinichiro</au><au>Yamaji, Taiki</au><au>Makino, Harumi</au><au>Ishii, Jun</au><au>Kondo, Akihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2021-05</date><risdate>2021</risdate><volume>65</volume><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates glucose and nicotinamide (Nam). Notably, we identify two actively functional transporters (NiaP and PnuC) and a high-activity key enzyme (Nampt), permitting intracellular Nam uptake, efficient conversion of phosphoribosyl pyrophosphate (PRPP; supplied from glucose) and Nam to NMN, and NMN excretion extracellularly. Further, enhancement of the PRPP biosynthetic pathway and optimization of individual gene expression enable drastically higher NMN production than reported thus far. The strain extracellularly produces 6.79 g l−1 of NMN from glucose and Nam, and the reaction selectivity from Nam to NMN is 86%. Our approach will be promising for low-cost, high-quality industrial production of NMN and other nucleotide compounds using microorganisms.
•Selective production of β-nicotinamide mononucleotide in E. coli.•Expression of PnuC from Bacillus mycoides realizes extracellular production of β-nicotinamide mononucleotide.•Multiple integration and balancing gene expression of identified components improve production.•Rational metabolic engineering results in 6.79 g l−1 β-nicotinamide mononucleotide production.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>33220420</pmid><doi>10.1016/j.ymben.2020.11.008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2568-515X</orcidid><orcidid>https://orcid.org/0000-0003-1229-1901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2021-05, Vol.65, p.167-177 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_2463107935 |
source | Access via ScienceDirect (Elsevier) |
subjects | Metabolic engineering Nucleotide Nutraceutical Synthetic metabolism Transporter Whole-cell biocatalyst |
title | Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20design%20for%20selective%20production%20of%20nicotinamide%20mononucleotide%20from%20glucose%20and%20nicotinamide&rft.jtitle=Metabolic%20engineering&rft.au=Shoji,%20Shinichiro&rft.date=2021-05&rft.volume=65&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2020.11.008&rft_dat=%3Cproquest_cross%3E2463107935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463107935&rft_id=info:pmid/33220420&rft_els_id=S1096717620301762&rfr_iscdi=true |