Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat

Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mycorrhiza 2021-03, Vol.31 (2), p.219-229
Hauptverfasser: Suetsugu, Kenji, Matsuoka, Shunsuke, Shutoh, Kohtaroh, Okada, Hidehito, Taketomi, Shintaro, Onimaru, Kaede, Tanabe, Akifumi S., Yamanaka, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 219
container_title Mycorrhiza
container_volume 31
creator Suetsugu, Kenji
Matsuoka, Shunsuke
Shutoh, Kohtaroh
Okada, Hidehito
Taketomi, Shintaro
Onimaru, Kaede
Tanabe, Akifumi S.
Yamanaka, Hiroki
description Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola , which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species ( Pyrola subaphylla ), a closely related partially mycoheterotrophic Pyrola species ( Pyrola japonica ), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula , which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula , thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks . In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts . Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula . Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica . Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla ) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola .
doi_str_mv 10.1007/s00572-020-01002-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463107370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493702590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQRi0EopfCC7BAltiwaMrYTuybJar4k4raBawjx5nc-Cqxg-2oCg_Ds-I2BaQuurLlOXPG9kfIawbnDEC9jwCV4gVwKCAf8KJ6QnasFLxg-xqekh3UJRRSSDghL2I8AjAlBXtOToTgrBICduT3t9X4EAb7S4_U-GlanE0WI_U9TTeemtFHHFcacNQJOxpnNLl8Rq_X4EdN49LqeVjHvNWuo9fn9Khn76zRZ_TGpiE7XQo6JusOtMNDwM095bEDJgw-BZ8F1Dqabes06xSsoYNubdLpJXnW6zHiq_v1lPz49PH7xZfi8urz14sPl4URqkqFYlLsZVdq5GhaJcquB1bWJTJZKtmJWglU0vQ1wt50teDtntWy4oq3lcyN4pS827xz8D8XjKmZbDSYn-XQL7HhZf44UEJBRt8-QI9-CS7fLlN1JnhV31J8o0zwMQbsmznYSYe1YdDcptds6TU5veYuvabKTW_u1Us7Yfev5W9cGRAbEHPJHTD8n_2I9g8e1abr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493702590</pqid></control><display><type>article</type><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</creator><creatorcontrib>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</creatorcontrib><description>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola , which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species ( Pyrola subaphylla ), a closely related partially mycoheterotrophic Pyrola species ( Pyrola japonica ), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula , which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula , thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks . In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts . Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula . Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica . Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla ) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola .</description><identifier>ISSN: 0940-6360</identifier><identifier>EISSN: 1432-1890</identifier><identifier>DOI: 10.1007/s00572-020-01002-5</identifier><identifier>PMID: 33215330</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Biological evolution ; Biomedical and Life Sciences ; Carbon ; Carbon sources ; DNA sequencing ; Ecology ; Ectomycorrhizas ; Forestry ; Forests ; Fungi ; Life Sciences ; Microbiology ; Mycobionts ; Mycorrhizae - genetics ; Original Article ; Plant Sciences ; Pyrola ; Pyrola subaphylla ; Specialization ; Species ; Sympatric populations ; Sympatry ; Trees</subject><ispartof>Mycorrhiza, 2021-03, Vol.31 (2), p.219-229</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</citedby><cites>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</cites><orcidid>0000-0002-7943-4164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00572-020-01002-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00572-020-01002-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33215330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suetsugu, Kenji</creatorcontrib><creatorcontrib>Matsuoka, Shunsuke</creatorcontrib><creatorcontrib>Shutoh, Kohtaroh</creatorcontrib><creatorcontrib>Okada, Hidehito</creatorcontrib><creatorcontrib>Taketomi, Shintaro</creatorcontrib><creatorcontrib>Onimaru, Kaede</creatorcontrib><creatorcontrib>Tanabe, Akifumi S.</creatorcontrib><creatorcontrib>Yamanaka, Hiroki</creatorcontrib><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><title>Mycorrhiza</title><addtitle>Mycorrhiza</addtitle><addtitle>Mycorrhiza</addtitle><description>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola , which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species ( Pyrola subaphylla ), a closely related partially mycoheterotrophic Pyrola species ( Pyrola japonica ), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula , which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula , thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks . In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts . Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula . Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica . Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla ) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola .</description><subject>Agriculture</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>DNA sequencing</subject><subject>Ecology</subject><subject>Ectomycorrhizas</subject><subject>Forestry</subject><subject>Forests</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mycobionts</subject><subject>Mycorrhizae - genetics</subject><subject>Original Article</subject><subject>Plant Sciences</subject><subject>Pyrola</subject><subject>Pyrola subaphylla</subject><subject>Specialization</subject><subject>Species</subject><subject>Sympatric populations</subject><subject>Sympatry</subject><subject>Trees</subject><issn>0940-6360</issn><issn>1432-1890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQRi0EopfCC7BAltiwaMrYTuybJar4k4raBawjx5nc-Cqxg-2oCg_Ds-I2BaQuurLlOXPG9kfIawbnDEC9jwCV4gVwKCAf8KJ6QnasFLxg-xqekh3UJRRSSDghL2I8AjAlBXtOToTgrBICduT3t9X4EAb7S4_U-GlanE0WI_U9TTeemtFHHFcacNQJOxpnNLl8Rq_X4EdN49LqeVjHvNWuo9fn9Khn76zRZ_TGpiE7XQo6JusOtMNDwM095bEDJgw-BZ8F1Dqabes06xSsoYNubdLpJXnW6zHiq_v1lPz49PH7xZfi8urz14sPl4URqkqFYlLsZVdq5GhaJcquB1bWJTJZKtmJWglU0vQ1wt50teDtntWy4oq3lcyN4pS827xz8D8XjKmZbDSYn-XQL7HhZf44UEJBRt8-QI9-CS7fLlN1JnhV31J8o0zwMQbsmznYSYe1YdDcptds6TU5veYuvabKTW_u1Us7Yfev5W9cGRAbEHPJHTD8n_2I9g8e1abr</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Suetsugu, Kenji</creator><creator>Matsuoka, Shunsuke</creator><creator>Shutoh, Kohtaroh</creator><creator>Okada, Hidehito</creator><creator>Taketomi, Shintaro</creator><creator>Onimaru, Kaede</creator><creator>Tanabe, Akifumi S.</creator><creator>Yamanaka, Hiroki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7943-4164</orcidid></search><sort><creationdate>20210301</creationdate><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><author>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>DNA sequencing</topic><topic>Ecology</topic><topic>Ectomycorrhizas</topic><topic>Forestry</topic><topic>Forests</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mycobionts</topic><topic>Mycorrhizae - genetics</topic><topic>Original Article</topic><topic>Plant Sciences</topic><topic>Pyrola</topic><topic>Pyrola subaphylla</topic><topic>Specialization</topic><topic>Species</topic><topic>Sympatric populations</topic><topic>Sympatry</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suetsugu, Kenji</creatorcontrib><creatorcontrib>Matsuoka, Shunsuke</creatorcontrib><creatorcontrib>Shutoh, Kohtaroh</creatorcontrib><creatorcontrib>Okada, Hidehito</creatorcontrib><creatorcontrib>Taketomi, Shintaro</creatorcontrib><creatorcontrib>Onimaru, Kaede</creatorcontrib><creatorcontrib>Tanabe, Akifumi S.</creatorcontrib><creatorcontrib>Yamanaka, Hiroki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Mycorrhiza</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suetsugu, Kenji</au><au>Matsuoka, Shunsuke</au><au>Shutoh, Kohtaroh</au><au>Okada, Hidehito</au><au>Taketomi, Shintaro</au><au>Onimaru, Kaede</au><au>Tanabe, Akifumi S.</au><au>Yamanaka, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</atitle><jtitle>Mycorrhiza</jtitle><stitle>Mycorrhiza</stitle><addtitle>Mycorrhiza</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>0940-6360</issn><eissn>1432-1890</eissn><abstract>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola , which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species ( Pyrola subaphylla ), a closely related partially mycoheterotrophic Pyrola species ( Pyrola japonica ), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula , which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula , thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks . In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts . Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula . Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica . Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla ) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33215330</pmid><doi>10.1007/s00572-020-01002-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7943-4164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0940-6360
ispartof Mycorrhiza, 2021-03, Vol.31 (2), p.219-229
issn 0940-6360
1432-1890
language eng
recordid cdi_proquest_miscellaneous_2463107370
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Biological evolution
Biomedical and Life Sciences
Carbon
Carbon sources
DNA sequencing
Ecology
Ectomycorrhizas
Forestry
Forests
Fungi
Life Sciences
Microbiology
Mycobionts
Mycorrhizae - genetics
Original Article
Plant Sciences
Pyrola
Pyrola subaphylla
Specialization
Species
Sympatric populations
Sympatry
Trees
title Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycorrhizal%20communities%20of%20two%20closely%20related%20species,%20Pyrola%20subaphylla%20and%20P.%20japonica,%20with%20contrasting%20degrees%20of%20mycoheterotrophy%20in%20a%20sympatric%20habitat&rft.jtitle=Mycorrhiza&rft.au=Suetsugu,%20Kenji&rft.date=2021-03-01&rft.volume=31&rft.issue=2&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=0940-6360&rft.eissn=1432-1890&rft_id=info:doi/10.1007/s00572-020-01002-5&rft_dat=%3Cproquest_cross%3E2493702590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493702590&rft_id=info:pmid/33215330&rfr_iscdi=true