Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat
Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of...
Gespeichert in:
Veröffentlicht in: | Mycorrhiza 2021-03, Vol.31 (2), p.219-229 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 2 |
container_start_page | 219 |
container_title | Mycorrhiza |
container_volume | 31 |
creator | Suetsugu, Kenji Matsuoka, Shunsuke Shutoh, Kohtaroh Okada, Hidehito Taketomi, Shintaro Onimaru, Kaede Tanabe, Akifumi S. Yamanaka, Hiroki |
description | Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus
Pyrola
, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic
Pyrola
species (
Pyrola subaphylla
), a closely related partially mycoheterotrophic
Pyrola
species (
Pyrola japonica
), and a co-occurring autotrophic ectomycorrhizal tree,
Quercus crispula
, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two
Pyrola
species and
Q. crispula
, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks
.
In addition, not only
P. japonica
but also
P. subaphylla
exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as
P. subaphylla
mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as
P. japonica
mycobionts
.
Nonetheless, the beta mycobiont diversity of
P. subaphylla
and
P. japonica
individuals was significantly lower than that of
Q. crispula
. Moreover, the beta mycobiont diversity of
P. subaphylla
was found to be significantly lower than that of
P. japonica
. Therefore, despite their seemingly broad mycorrhizal interactions, the two
Pyrola
species (particularly
P. subaphylla
) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus
Pyrola
. |
doi_str_mv | 10.1007/s00572-020-01002-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463107370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493702590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQRi0EopfCC7BAltiwaMrYTuybJar4k4raBawjx5nc-Cqxg-2oCg_Ds-I2BaQuurLlOXPG9kfIawbnDEC9jwCV4gVwKCAf8KJ6QnasFLxg-xqekh3UJRRSSDghL2I8AjAlBXtOToTgrBICduT3t9X4EAb7S4_U-GlanE0WI_U9TTeemtFHHFcacNQJOxpnNLl8Rq_X4EdN49LqeVjHvNWuo9fn9Khn76zRZ_TGpiE7XQo6JusOtMNDwM095bEDJgw-BZ8F1Dqabes06xSsoYNubdLpJXnW6zHiq_v1lPz49PH7xZfi8urz14sPl4URqkqFYlLsZVdq5GhaJcquB1bWJTJZKtmJWglU0vQ1wt50teDtntWy4oq3lcyN4pS827xz8D8XjKmZbDSYn-XQL7HhZf44UEJBRt8-QI9-CS7fLlN1JnhV31J8o0zwMQbsmznYSYe1YdDcptds6TU5veYuvabKTW_u1Us7Yfev5W9cGRAbEHPJHTD8n_2I9g8e1abr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493702590</pqid></control><display><type>article</type><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</creator><creatorcontrib>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</creatorcontrib><description>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus
Pyrola
, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic
Pyrola
species (
Pyrola subaphylla
), a closely related partially mycoheterotrophic
Pyrola
species (
Pyrola japonica
), and a co-occurring autotrophic ectomycorrhizal tree,
Quercus crispula
, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two
Pyrola
species and
Q. crispula
, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks
.
In addition, not only
P. japonica
but also
P. subaphylla
exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as
P. subaphylla
mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as
P. japonica
mycobionts
.
Nonetheless, the beta mycobiont diversity of
P. subaphylla
and
P. japonica
individuals was significantly lower than that of
Q. crispula
. Moreover, the beta mycobiont diversity of
P. subaphylla
was found to be significantly lower than that of
P. japonica
. Therefore, despite their seemingly broad mycorrhizal interactions, the two
Pyrola
species (particularly
P. subaphylla
) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus
Pyrola
.</description><identifier>ISSN: 0940-6360</identifier><identifier>EISSN: 1432-1890</identifier><identifier>DOI: 10.1007/s00572-020-01002-5</identifier><identifier>PMID: 33215330</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Biological evolution ; Biomedical and Life Sciences ; Carbon ; Carbon sources ; DNA sequencing ; Ecology ; Ectomycorrhizas ; Forestry ; Forests ; Fungi ; Life Sciences ; Microbiology ; Mycobionts ; Mycorrhizae - genetics ; Original Article ; Plant Sciences ; Pyrola ; Pyrola subaphylla ; Specialization ; Species ; Sympatric populations ; Sympatry ; Trees</subject><ispartof>Mycorrhiza, 2021-03, Vol.31 (2), p.219-229</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</citedby><cites>FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</cites><orcidid>0000-0002-7943-4164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00572-020-01002-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00572-020-01002-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33215330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suetsugu, Kenji</creatorcontrib><creatorcontrib>Matsuoka, Shunsuke</creatorcontrib><creatorcontrib>Shutoh, Kohtaroh</creatorcontrib><creatorcontrib>Okada, Hidehito</creatorcontrib><creatorcontrib>Taketomi, Shintaro</creatorcontrib><creatorcontrib>Onimaru, Kaede</creatorcontrib><creatorcontrib>Tanabe, Akifumi S.</creatorcontrib><creatorcontrib>Yamanaka, Hiroki</creatorcontrib><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><title>Mycorrhiza</title><addtitle>Mycorrhiza</addtitle><addtitle>Mycorrhiza</addtitle><description>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus
Pyrola
, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic
Pyrola
species (
Pyrola subaphylla
), a closely related partially mycoheterotrophic
Pyrola
species (
Pyrola japonica
), and a co-occurring autotrophic ectomycorrhizal tree,
Quercus crispula
, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two
Pyrola
species and
Q. crispula
, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks
.
In addition, not only
P. japonica
but also
P. subaphylla
exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as
P. subaphylla
mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as
P. japonica
mycobionts
.
Nonetheless, the beta mycobiont diversity of
P. subaphylla
and
P. japonica
individuals was significantly lower than that of
Q. crispula
. Moreover, the beta mycobiont diversity of
P. subaphylla
was found to be significantly lower than that of
P. japonica
. Therefore, despite their seemingly broad mycorrhizal interactions, the two
Pyrola
species (particularly
P. subaphylla
) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus
Pyrola
.</description><subject>Agriculture</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>DNA sequencing</subject><subject>Ecology</subject><subject>Ectomycorrhizas</subject><subject>Forestry</subject><subject>Forests</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mycobionts</subject><subject>Mycorrhizae - genetics</subject><subject>Original Article</subject><subject>Plant Sciences</subject><subject>Pyrola</subject><subject>Pyrola subaphylla</subject><subject>Specialization</subject><subject>Species</subject><subject>Sympatric populations</subject><subject>Sympatry</subject><subject>Trees</subject><issn>0940-6360</issn><issn>1432-1890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQRi0EopfCC7BAltiwaMrYTuybJar4k4raBawjx5nc-Cqxg-2oCg_Ds-I2BaQuurLlOXPG9kfIawbnDEC9jwCV4gVwKCAf8KJ6QnasFLxg-xqekh3UJRRSSDghL2I8AjAlBXtOToTgrBICduT3t9X4EAb7S4_U-GlanE0WI_U9TTeemtFHHFcacNQJOxpnNLl8Rq_X4EdN49LqeVjHvNWuo9fn9Khn76zRZ_TGpiE7XQo6JusOtMNDwM095bEDJgw-BZ8F1Dqabes06xSsoYNubdLpJXnW6zHiq_v1lPz49PH7xZfi8urz14sPl4URqkqFYlLsZVdq5GhaJcquB1bWJTJZKtmJWglU0vQ1wt50teDtntWy4oq3lcyN4pS827xz8D8XjKmZbDSYn-XQL7HhZf44UEJBRt8-QI9-CS7fLlN1JnhV31J8o0zwMQbsmznYSYe1YdDcptds6TU5veYuvabKTW_u1Us7Yfev5W9cGRAbEHPJHTD8n_2I9g8e1abr</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Suetsugu, Kenji</creator><creator>Matsuoka, Shunsuke</creator><creator>Shutoh, Kohtaroh</creator><creator>Okada, Hidehito</creator><creator>Taketomi, Shintaro</creator><creator>Onimaru, Kaede</creator><creator>Tanabe, Akifumi S.</creator><creator>Yamanaka, Hiroki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7943-4164</orcidid></search><sort><creationdate>20210301</creationdate><title>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</title><author>Suetsugu, Kenji ; Matsuoka, Shunsuke ; Shutoh, Kohtaroh ; Okada, Hidehito ; Taketomi, Shintaro ; Onimaru, Kaede ; Tanabe, Akifumi S. ; Yamanaka, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-716386d4ae2ecb734df01494e16476d3973e76cf9e08cd932b81965272b5686d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>DNA sequencing</topic><topic>Ecology</topic><topic>Ectomycorrhizas</topic><topic>Forestry</topic><topic>Forests</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mycobionts</topic><topic>Mycorrhizae - genetics</topic><topic>Original Article</topic><topic>Plant Sciences</topic><topic>Pyrola</topic><topic>Pyrola subaphylla</topic><topic>Specialization</topic><topic>Species</topic><topic>Sympatric populations</topic><topic>Sympatry</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suetsugu, Kenji</creatorcontrib><creatorcontrib>Matsuoka, Shunsuke</creatorcontrib><creatorcontrib>Shutoh, Kohtaroh</creatorcontrib><creatorcontrib>Okada, Hidehito</creatorcontrib><creatorcontrib>Taketomi, Shintaro</creatorcontrib><creatorcontrib>Onimaru, Kaede</creatorcontrib><creatorcontrib>Tanabe, Akifumi S.</creatorcontrib><creatorcontrib>Yamanaka, Hiroki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Mycorrhiza</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suetsugu, Kenji</au><au>Matsuoka, Shunsuke</au><au>Shutoh, Kohtaroh</au><au>Okada, Hidehito</au><au>Taketomi, Shintaro</au><au>Onimaru, Kaede</au><au>Tanabe, Akifumi S.</au><au>Yamanaka, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat</atitle><jtitle>Mycorrhiza</jtitle><stitle>Mycorrhiza</stitle><addtitle>Mycorrhiza</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>219</spage><epage>229</epage><pages>219-229</pages><issn>0940-6360</issn><eissn>1432-1890</eissn><abstract>Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus
Pyrola
, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic
Pyrola
species (
Pyrola subaphylla
), a closely related partially mycoheterotrophic
Pyrola
species (
Pyrola japonica
), and a co-occurring autotrophic ectomycorrhizal tree,
Quercus crispula
, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two
Pyrola
species and
Q. crispula
, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks
.
In addition, not only
P. japonica
but also
P. subaphylla
exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as
P. subaphylla
mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as
P. japonica
mycobionts
.
Nonetheless, the beta mycobiont diversity of
P. subaphylla
and
P. japonica
individuals was significantly lower than that of
Q. crispula
. Moreover, the beta mycobiont diversity of
P. subaphylla
was found to be significantly lower than that of
P. japonica
. Therefore, despite their seemingly broad mycorrhizal interactions, the two
Pyrola
species (particularly
P. subaphylla
) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus
Pyrola
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33215330</pmid><doi>10.1007/s00572-020-01002-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7943-4164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0940-6360 |
ispartof | Mycorrhiza, 2021-03, Vol.31 (2), p.219-229 |
issn | 0940-6360 1432-1890 |
language | eng |
recordid | cdi_proquest_miscellaneous_2463107370 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Biological evolution Biomedical and Life Sciences Carbon Carbon sources DNA sequencing Ecology Ectomycorrhizas Forestry Forests Fungi Life Sciences Microbiology Mycobionts Mycorrhizae - genetics Original Article Plant Sciences Pyrola Pyrola subaphylla Specialization Species Sympatric populations Sympatry Trees |
title | Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycorrhizal%20communities%20of%20two%20closely%20related%20species,%20Pyrola%20subaphylla%20and%20P.%20japonica,%20with%20contrasting%20degrees%20of%20mycoheterotrophy%20in%20a%20sympatric%20habitat&rft.jtitle=Mycorrhiza&rft.au=Suetsugu,%20Kenji&rft.date=2021-03-01&rft.volume=31&rft.issue=2&rft.spage=219&rft.epage=229&rft.pages=219-229&rft.issn=0940-6360&rft.eissn=1432-1890&rft_id=info:doi/10.1007/s00572-020-01002-5&rft_dat=%3Cproquest_cross%3E2493702590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493702590&rft_id=info:pmid/33215330&rfr_iscdi=true |