Fracture micromechanics of human dentin: A microscale numerical model

In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-02, Vol.114, p.104171-104171, Article 104171
Hauptverfasser: Maghami, Ebrahim, Pejman, Reza, Najafi, Ahmad R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104171
container_issue
container_start_page 104171
container_title Journal of the mechanical behavior of biomedical materials
container_volume 114
creator Maghami, Ebrahim
Pejman, Reza
Najafi, Ahmad R.
description In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin. •A phase-field model to study fracture micromechanics in dentin is presented.•Effects of microstructural features (i.e., tubules) on crack growth are discussed.•The region-dependent fracture behavior of the dentin microstructure is elucidated.•The role of various toughening mechanisms impacting fracture behavior is revealed.
doi_str_mv 10.1016/j.jmbbm.2020.104171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463106136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S175161612030713X</els_id><sourcerecordid>2463106136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ffc6074c0399bcfc0eda286a44da60cb5d98b3b93a47c911da8305eae7d3cf863</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk7_AkF69NKZNG2aCh7G2FQYeNFzSF9eWUbTzqQV_O9trXr09B6P7_36CLlmdMkoE3eH5cGVpVsmNBkrKcvZCZkzmcuYMklPhzzPWCyYYDNyEcKBUkGplOdkxnnCZJHkc7LZeg1d7zFyFnzrEPa6sRCitor2vdNNZLDpbHMfrSYigK4xanqH3g5p5FqD9SU5q3Qd8OonLsjbdvO6fop3L4_P69UuBp4VXVxVIGieAuVFUUIFFI1OpNBparSgUGamkCUvC67THArGjJacZqgxNxwqKfiC3E5zj7597zF0ytkAWNe6wbYPKkkFZ1QwPqJ8Qsebg8dKHb112n8qRtXoTx3Utz81-lOTv6Hr5mdBXzo0fz2_wgbgYQJwePPDolcBLDaAxnqETpnW_rvgC12HgjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463106136</pqid></control><display><type>article</type><title>Fracture micromechanics of human dentin: A microscale numerical model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Maghami, Ebrahim ; Pejman, Reza ; Najafi, Ahmad R.</creator><creatorcontrib>Maghami, Ebrahim ; Pejman, Reza ; Najafi, Ahmad R.</creatorcontrib><description>In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin. •A phase-field model to study fracture micromechanics in dentin is presented.•Effects of microstructural features (i.e., tubules) on crack growth are discussed.•The region-dependent fracture behavior of the dentin microstructure is elucidated.•The role of various toughening mechanisms impacting fracture behavior is revealed.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2020.104171</identifier><identifier>PMID: 33218927</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Crack growth ; Critical energy release rate ; Dentin ; Dentin microstructure ; Dentinal tubules ; Humans ; Ligaments ; Phase-field modeling</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2021-02, Vol.114, p.104171-104171, Article 104171</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ffc6074c0399bcfc0eda286a44da60cb5d98b3b93a47c911da8305eae7d3cf863</citedby><cites>FETCH-LOGICAL-c359t-ffc6074c0399bcfc0eda286a44da60cb5d98b3b93a47c911da8305eae7d3cf863</cites><orcidid>0000-0001-6405-2721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S175161612030713X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33218927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maghami, Ebrahim</creatorcontrib><creatorcontrib>Pejman, Reza</creatorcontrib><creatorcontrib>Najafi, Ahmad R.</creatorcontrib><title>Fracture micromechanics of human dentin: A microscale numerical model</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin. •A phase-field model to study fracture micromechanics in dentin is presented.•Effects of microstructural features (i.e., tubules) on crack growth are discussed.•The region-dependent fracture behavior of the dentin microstructure is elucidated.•The role of various toughening mechanisms impacting fracture behavior is revealed.</description><subject>Crack growth</subject><subject>Critical energy release rate</subject><subject>Dentin</subject><subject>Dentin microstructure</subject><subject>Dentinal tubules</subject><subject>Humans</subject><subject>Ligaments</subject><subject>Phase-field modeling</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUgIMobk7_AkF69NKZNG2aCh7G2FQYeNFzSF9eWUbTzqQV_O9trXr09B6P7_36CLlmdMkoE3eH5cGVpVsmNBkrKcvZCZkzmcuYMklPhzzPWCyYYDNyEcKBUkGplOdkxnnCZJHkc7LZeg1d7zFyFnzrEPa6sRCitor2vdNNZLDpbHMfrSYigK4xanqH3g5p5FqD9SU5q3Qd8OonLsjbdvO6fop3L4_P69UuBp4VXVxVIGieAuVFUUIFFI1OpNBparSgUGamkCUvC67THArGjJacZqgxNxwqKfiC3E5zj7597zF0ytkAWNe6wbYPKkkFZ1QwPqJ8Qsebg8dKHb112n8qRtXoTx3Utz81-lOTv6Hr5mdBXzo0fz2_wgbgYQJwePPDolcBLDaAxnqETpnW_rvgC12HgjI</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Maghami, Ebrahim</creator><creator>Pejman, Reza</creator><creator>Najafi, Ahmad R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6405-2721</orcidid></search><sort><creationdate>202102</creationdate><title>Fracture micromechanics of human dentin: A microscale numerical model</title><author>Maghami, Ebrahim ; Pejman, Reza ; Najafi, Ahmad R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ffc6074c0399bcfc0eda286a44da60cb5d98b3b93a47c911da8305eae7d3cf863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crack growth</topic><topic>Critical energy release rate</topic><topic>Dentin</topic><topic>Dentin microstructure</topic><topic>Dentinal tubules</topic><topic>Humans</topic><topic>Ligaments</topic><topic>Phase-field modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maghami, Ebrahim</creatorcontrib><creatorcontrib>Pejman, Reza</creatorcontrib><creatorcontrib>Najafi, Ahmad R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maghami, Ebrahim</au><au>Pejman, Reza</au><au>Najafi, Ahmad R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture micromechanics of human dentin: A microscale numerical model</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>114</volume><spage>104171</spage><epage>104171</epage><pages>104171-104171</pages><artnum>104171</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>In the present study, we investigate the effects of microstructural morphology and heterogeneity on the initiation and propagation of microcracks in dentin. We create 2D pre-cracked models of human dentin at the microscale level and use a brittle fracture framework of the phase-field method to analyze the crack growth. We discuss the influence of the microstructural features on crack deflection, microcracking, and uncracked ligament bridging through various regions in dentin. The results demonstrate that the difference between the critical energy release rates of peritubular (PTD) and intertubular dentin (ITD) has considerable impacts on microcracking. Our simulations reveal that tubules surrounded by PTDs play an important role in the crack deflection. Our results also indicate that the toughness of dentin increases from the inner to outer dentin. In conclusion, the findings in our study provide valuable insights into the fracture behavior in various regions of dentin. •A phase-field model to study fracture micromechanics in dentin is presented.•Effects of microstructural features (i.e., tubules) on crack growth are discussed.•The region-dependent fracture behavior of the dentin microstructure is elucidated.•The role of various toughening mechanisms impacting fracture behavior is revealed.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>33218927</pmid><doi>10.1016/j.jmbbm.2020.104171</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6405-2721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2021-02, Vol.114, p.104171-104171, Article 104171
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_2463106136
source MEDLINE; Elsevier ScienceDirect Journals
subjects Crack growth
Critical energy release rate
Dentin
Dentin microstructure
Dentinal tubules
Humans
Ligaments
Phase-field modeling
title Fracture micromechanics of human dentin: A microscale numerical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20micromechanics%20of%20human%20dentin:%20A%20microscale%20numerical%20model&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Maghami,%20Ebrahim&rft.date=2021-02&rft.volume=114&rft.spage=104171&rft.epage=104171&rft.pages=104171-104171&rft.artnum=104171&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2020.104171&rft_dat=%3Cproquest_cross%3E2463106136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463106136&rft_id=info:pmid/33218927&rft_els_id=S175161612030713X&rfr_iscdi=true