Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis

The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-12, Vol.14 (12), p.16962-16972
Hauptverfasser: Markwalter, Chester E, Uralcan, Betul, Pelczer, István, Zarzhitsky, Shlomo, Hecht, Michael H, Prud’homme, Robert K, Debenedetti, Pablo G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16972
container_issue 12
container_start_page 16962
container_title ACS nano
container_volume 14
creator Markwalter, Chester E
Uralcan, Betul
Pelczer, István
Zarzhitsky, Shlomo
Hecht, Michael H
Prud’homme, Robert K
Debenedetti, Pablo G
description The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase. These results highlight the insights that simulations and NMR provide for the formulation of proteins in nanocarriers.
doi_str_mv 10.1021/acsnano.0c06056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2463101383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463101383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-2b0b9f9ddba961b017664bd07bd19eb1d03cc8f2cb1bc6a412be37ecd1a181833</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnJ695ijItrx2S1tvQ6YOhgpV8BaSNJ0ZbVKTVNh_4J9tdMWbp_d434_33ofQJZApkARmXHrDjZ0SSShZ0CM0giKlE5LTt-O_fgGn6Mz7HSGLLM_oCH2VgQvd6LDHtsbPzgalDS6D62XoncJV77TZ4sfoLLlzWjm8MpJ3vm940Nbc4LXxevsePLZRZ5tPZQJe1bWScVQ72-JStwPZY24qXHYRc9ZL22mJl4Y3e6_9OTqpeePVxVDH6PVu9XL7MNk83a9vl5sJT4GESSKIKOqiqgQvKAgCGaVzUZFMVFAoARVJpczrRAoQkvI5JEKlmZIVcMghT9Mxujr4ds5-9MoH1movVdNwo2zvWTKncRGkv9TZgSrjtd6pmnVOt9ztGRD2kzkbMmdD5lFxfVBEgO1s7-Jz_l_2N8HiiUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463101383</pqid></control><display><type>article</type><title>Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis</title><source>ACS Publications</source><creator>Markwalter, Chester E ; Uralcan, Betul ; Pelczer, István ; Zarzhitsky, Shlomo ; Hecht, Michael H ; Prud’homme, Robert K ; Debenedetti, Pablo G</creator><creatorcontrib>Markwalter, Chester E ; Uralcan, Betul ; Pelczer, István ; Zarzhitsky, Shlomo ; Hecht, Michael H ; Prud’homme, Robert K ; Debenedetti, Pablo G</creatorcontrib><description>The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase. These results highlight the insights that simulations and NMR provide for the formulation of proteins in nanocarriers.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c06056</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-12, Vol.14 (12), p.16962-16972</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-2b0b9f9ddba961b017664bd07bd19eb1d03cc8f2cb1bc6a412be37ecd1a181833</citedby><cites>FETCH-LOGICAL-a310t-2b0b9f9ddba961b017664bd07bd19eb1d03cc8f2cb1bc6a412be37ecd1a181833</cites><orcidid>0000-0003-2858-0097 ; 0000-0002-0247-5881 ; 0000-0002-7806-6101 ; 0000-0003-1881-1728 ; 0000-0002-0669-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c06056$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c06056$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Markwalter, Chester E</creatorcontrib><creatorcontrib>Uralcan, Betul</creatorcontrib><creatorcontrib>Pelczer, István</creatorcontrib><creatorcontrib>Zarzhitsky, Shlomo</creatorcontrib><creatorcontrib>Hecht, Michael H</creatorcontrib><creatorcontrib>Prud’homme, Robert K</creatorcontrib><creatorcontrib>Debenedetti, Pablo G</creatorcontrib><title>Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase. These results highlight the insights that simulations and NMR provide for the formulation of proteins in nanocarriers.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAUDqLgnJ695ijItrx2S1tvQ6YOhgpV8BaSNJ0ZbVKTVNh_4J9tdMWbp_d434_33ofQJZApkARmXHrDjZ0SSShZ0CM0giKlE5LTt-O_fgGn6Mz7HSGLLM_oCH2VgQvd6LDHtsbPzgalDS6D62XoncJV77TZ4sfoLLlzWjm8MpJ3vm940Nbc4LXxevsePLZRZ5tPZQJe1bWScVQ72-JStwPZY24qXHYRc9ZL22mJl4Y3e6_9OTqpeePVxVDH6PVu9XL7MNk83a9vl5sJT4GESSKIKOqiqgQvKAgCGaVzUZFMVFAoARVJpczrRAoQkvI5JEKlmZIVcMghT9Mxujr4ds5-9MoH1movVdNwo2zvWTKncRGkv9TZgSrjtd6pmnVOt9ztGRD2kzkbMmdD5lFxfVBEgO1s7-Jz_l_2N8HiiUM</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Markwalter, Chester E</creator><creator>Uralcan, Betul</creator><creator>Pelczer, István</creator><creator>Zarzhitsky, Shlomo</creator><creator>Hecht, Michael H</creator><creator>Prud’homme, Robert K</creator><creator>Debenedetti, Pablo G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2858-0097</orcidid><orcidid>https://orcid.org/0000-0002-0247-5881</orcidid><orcidid>https://orcid.org/0000-0002-7806-6101</orcidid><orcidid>https://orcid.org/0000-0003-1881-1728</orcidid><orcidid>https://orcid.org/0000-0002-0669-8441</orcidid></search><sort><creationdate>20201222</creationdate><title>Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis</title><author>Markwalter, Chester E ; Uralcan, Betul ; Pelczer, István ; Zarzhitsky, Shlomo ; Hecht, Michael H ; Prud’homme, Robert K ; Debenedetti, Pablo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-2b0b9f9ddba961b017664bd07bd19eb1d03cc8f2cb1bc6a412be37ecd1a181833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markwalter, Chester E</creatorcontrib><creatorcontrib>Uralcan, Betul</creatorcontrib><creatorcontrib>Pelczer, István</creatorcontrib><creatorcontrib>Zarzhitsky, Shlomo</creatorcontrib><creatorcontrib>Hecht, Michael H</creatorcontrib><creatorcontrib>Prud’homme, Robert K</creatorcontrib><creatorcontrib>Debenedetti, Pablo G</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markwalter, Chester E</au><au>Uralcan, Betul</au><au>Pelczer, István</au><au>Zarzhitsky, Shlomo</au><au>Hecht, Michael H</au><au>Prud’homme, Robert K</au><au>Debenedetti, Pablo G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>16962</spage><epage>16972</epage><pages>16962-16972</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase. These results highlight the insights that simulations and NMR provide for the formulation of proteins in nanocarriers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c06056</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2858-0097</orcidid><orcidid>https://orcid.org/0000-0002-0247-5881</orcidid><orcidid>https://orcid.org/0000-0002-7806-6101</orcidid><orcidid>https://orcid.org/0000-0003-1881-1728</orcidid><orcidid>https://orcid.org/0000-0002-0669-8441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-12, Vol.14 (12), p.16962-16972
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2463101383
source ACS Publications
title Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Protein%20Structure%20during%20Nanocarrier%20Encapsulation:%20Insights%20on%20Solvent%20Effects%20from%20Simulations%20and%20Spectroscopic%20Analysis&rft.jtitle=ACS%20nano&rft.au=Markwalter,%20Chester%20E&rft.date=2020-12-22&rft.volume=14&rft.issue=12&rft.spage=16962&rft.epage=16972&rft.pages=16962-16972&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c06056&rft_dat=%3Cproquest_cross%3E2463101383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463101383&rft_id=info:pmid/&rfr_iscdi=true