Coupling of hippocampal theta and ripples with pontogeniculooccipital waves
The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Her...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-01, Vol.589 (7840), p.96-102 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 7840 |
container_start_page | 96 |
container_title | Nature (London) |
container_volume | 589 |
creator | Ramirez-Villegas, Juan F. Besserve, Michel Murayama, Yusuke Evrard, Henry C. Oeltermann, Axel Logothetis, Nikos K. |
description | The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep
1
. These changes require precise homeostatic control by subcortical neuromodulatory structures
2
. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep. |
doi_str_mv | 10.1038/s41586-020-2914-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2462413426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462413426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaL7aZI-y-IULXvQc0nzsZmmb2rQu_nuzdFUQPA3MPPPO8ABwjtE1RlTcRIZzUUBEECRzzCA7AFPMeAFZIfghmCJEBESCFhNwEuMGIZRjzo7BhFKCxDzHU_C8CENb-WaVBZetfdsGrepWVVm_tr3KVGOyLnUrG7Ot79dZG5o-rGzj9VCFoLVvfZ_orfqw8RQcOVVFe7avM_B2f_e6eITLl4enxe0SaspJD0VpSiPmglinDHdcK6OEKJDKlaPW8HJOGVHaYEqEsyhXmgjsSs0UJohSTWfgasxtu_A-2NjL2kdtq0o1NgxRElYQhlNIkdDLP-gmDF2TvksUFzwXiItE4ZHSXYixs062na9V9ykxkjvTcjQtk2m5My1Z2rnYJw9lbc3PxrfaBJARiGnUrGz3e_r_1C8FNIn5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478758078</pqid></control><display><type>article</type><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</creator><creatorcontrib>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</creatorcontrib><description>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep
1
. These changes require precise homeostatic control by subcortical neuromodulatory structures
2
. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2914-4</identifier><identifier>PMID: 33208951</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/378/2649 ; 692/698 ; 9/30 ; 96/63 ; Animals ; Brain stem ; Cholinergics ; Chromosome Pairing - physiology ; Coupling ; Experiments ; Female ; Geniculate Bodies - physiology ; Hippocampus ; Hippocampus - physiology ; Homeostasis ; Humanities and Social Sciences ; Macaca - physiology ; Memory ; Memory Consolidation - physiology ; Monkeys ; multidisciplinary ; Neuronal Plasticity ; Occipital Lobe - physiology ; Plasticity ; Pons - physiology ; Ripples ; Science ; Science (multidisciplinary) ; Sleep ; Sleep - physiology ; Sleep Stages - physiology ; Theta Rhythm - physiology ; Theta rhythms</subject><ispartof>Nature (London), 2021-01, Vol.589 (7840), p.96-102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Jan 7, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</citedby><cites>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</cites><orcidid>0000-0001-7728-4118 ; 0000-0003-0025-2323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2914-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2914-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33208951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramirez-Villegas, Juan F.</creatorcontrib><creatorcontrib>Besserve, Michel</creatorcontrib><creatorcontrib>Murayama, Yusuke</creatorcontrib><creatorcontrib>Evrard, Henry C.</creatorcontrib><creatorcontrib>Oeltermann, Axel</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep
1
. These changes require precise homeostatic control by subcortical neuromodulatory structures
2
. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</description><subject>631/378</subject><subject>631/378/2649</subject><subject>692/698</subject><subject>9/30</subject><subject>96/63</subject><subject>Animals</subject><subject>Brain stem</subject><subject>Cholinergics</subject><subject>Chromosome Pairing - physiology</subject><subject>Coupling</subject><subject>Experiments</subject><subject>Female</subject><subject>Geniculate Bodies - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Macaca - physiology</subject><subject>Memory</subject><subject>Memory Consolidation - physiology</subject><subject>Monkeys</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Occipital Lobe - physiology</subject><subject>Plasticity</subject><subject>Pons - physiology</subject><subject>Ripples</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep Stages - physiology</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaL7aZI-y-IULXvQc0nzsZmmb2rQu_nuzdFUQPA3MPPPO8ABwjtE1RlTcRIZzUUBEECRzzCA7AFPMeAFZIfghmCJEBESCFhNwEuMGIZRjzo7BhFKCxDzHU_C8CENb-WaVBZetfdsGrepWVVm_tr3KVGOyLnUrG7Ot79dZG5o-rGzj9VCFoLVvfZ_orfqw8RQcOVVFe7avM_B2f_e6eITLl4enxe0SaspJD0VpSiPmglinDHdcK6OEKJDKlaPW8HJOGVHaYEqEsyhXmgjsSs0UJohSTWfgasxtu_A-2NjL2kdtq0o1NgxRElYQhlNIkdDLP-gmDF2TvksUFzwXiItE4ZHSXYixs062na9V9ykxkjvTcjQtk2m5My1Z2rnYJw9lbc3PxrfaBJARiGnUrGz3e_r_1C8FNIn5</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Ramirez-Villegas, Juan F.</creator><creator>Besserve, Michel</creator><creator>Murayama, Yusuke</creator><creator>Evrard, Henry C.</creator><creator>Oeltermann, Axel</creator><creator>Logothetis, Nikos K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7728-4118</orcidid><orcidid>https://orcid.org/0000-0003-0025-2323</orcidid></search><sort><creationdate>20210107</creationdate><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><author>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378</topic><topic>631/378/2649</topic><topic>692/698</topic><topic>9/30</topic><topic>96/63</topic><topic>Animals</topic><topic>Brain stem</topic><topic>Cholinergics</topic><topic>Chromosome Pairing - physiology</topic><topic>Coupling</topic><topic>Experiments</topic><topic>Female</topic><topic>Geniculate Bodies - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Macaca - physiology</topic><topic>Memory</topic><topic>Memory Consolidation - physiology</topic><topic>Monkeys</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Occipital Lobe - physiology</topic><topic>Plasticity</topic><topic>Pons - physiology</topic><topic>Ripples</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep Stages - physiology</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Villegas, Juan F.</creatorcontrib><creatorcontrib>Besserve, Michel</creatorcontrib><creatorcontrib>Murayama, Yusuke</creatorcontrib><creatorcontrib>Evrard, Henry C.</creatorcontrib><creatorcontrib>Oeltermann, Axel</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Villegas, Juan F.</au><au>Besserve, Michel</au><au>Murayama, Yusuke</au><au>Evrard, Henry C.</au><au>Oeltermann, Axel</au><au>Logothetis, Nikos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>589</volume><issue>7840</issue><spage>96</spage><epage>102</epage><pages>96-102</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep
1
. These changes require precise homeostatic control by subcortical neuromodulatory structures
2
. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.
Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33208951</pmid><doi>10.1038/s41586-020-2914-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7728-4118</orcidid><orcidid>https://orcid.org/0000-0003-0025-2323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-01, Vol.589 (7840), p.96-102 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2462413426 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378 631/378/2649 692/698 9/30 96/63 Animals Brain stem Cholinergics Chromosome Pairing - physiology Coupling Experiments Female Geniculate Bodies - physiology Hippocampus Hippocampus - physiology Homeostasis Humanities and Social Sciences Macaca - physiology Memory Memory Consolidation - physiology Monkeys multidisciplinary Neuronal Plasticity Occipital Lobe - physiology Plasticity Pons - physiology Ripples Science Science (multidisciplinary) Sleep Sleep - physiology Sleep Stages - physiology Theta Rhythm - physiology Theta rhythms |
title | Coupling of hippocampal theta and ripples with pontogeniculooccipital waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20hippocampal%20theta%20and%20ripples%20with%20pontogeniculooccipital%20waves&rft.jtitle=Nature%20(London)&rft.au=Ramirez-Villegas,%20Juan%20F.&rft.date=2021-01-07&rft.volume=589&rft.issue=7840&rft.spage=96&rft.epage=102&rft.pages=96-102&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2914-4&rft_dat=%3Cproquest_cross%3E2462413426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478758078&rft_id=info:pmid/33208951&rfr_iscdi=true |