Coupling of hippocampal theta and ripples with pontogeniculooccipital waves

The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-01, Vol.589 (7840), p.96-102
Hauptverfasser: Ramirez-Villegas, Juan F., Besserve, Michel, Murayama, Yusuke, Evrard, Henry C., Oeltermann, Axel, Logothetis, Nikos K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 7840
container_start_page 96
container_title Nature (London)
container_volume 589
creator Ramirez-Villegas, Juan F.
Besserve, Michel
Murayama, Yusuke
Evrard, Henry C.
Oeltermann, Axel
Logothetis, Nikos K.
description The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.
doi_str_mv 10.1038/s41586-020-2914-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2462413426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462413426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaL7aZI-y-IULXvQc0nzsZmmb2rQu_nuzdFUQPA3MPPPO8ABwjtE1RlTcRIZzUUBEECRzzCA7AFPMeAFZIfghmCJEBESCFhNwEuMGIZRjzo7BhFKCxDzHU_C8CENb-WaVBZetfdsGrepWVVm_tr3KVGOyLnUrG7Ot79dZG5o-rGzj9VCFoLVvfZ_orfqw8RQcOVVFe7avM_B2f_e6eITLl4enxe0SaspJD0VpSiPmglinDHdcK6OEKJDKlaPW8HJOGVHaYEqEsyhXmgjsSs0UJohSTWfgasxtu_A-2NjL2kdtq0o1NgxRElYQhlNIkdDLP-gmDF2TvksUFzwXiItE4ZHSXYixs062na9V9ykxkjvTcjQtk2m5My1Z2rnYJw9lbc3PxrfaBJARiGnUrGz3e_r_1C8FNIn5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478758078</pqid></control><display><type>article</type><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</creator><creatorcontrib>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</creatorcontrib><description>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2914-4</identifier><identifier>PMID: 33208951</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/378/2649 ; 692/698 ; 9/30 ; 96/63 ; Animals ; Brain stem ; Cholinergics ; Chromosome Pairing - physiology ; Coupling ; Experiments ; Female ; Geniculate Bodies - physiology ; Hippocampus ; Hippocampus - physiology ; Homeostasis ; Humanities and Social Sciences ; Macaca - physiology ; Memory ; Memory Consolidation - physiology ; Monkeys ; multidisciplinary ; Neuronal Plasticity ; Occipital Lobe - physiology ; Plasticity ; Pons - physiology ; Ripples ; Science ; Science (multidisciplinary) ; Sleep ; Sleep - physiology ; Sleep Stages - physiology ; Theta Rhythm - physiology ; Theta rhythms</subject><ispartof>Nature (London), 2021-01, Vol.589 (7840), p.96-102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>Copyright Nature Publishing Group Jan 7, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</citedby><cites>FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</cites><orcidid>0000-0001-7728-4118 ; 0000-0003-0025-2323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2914-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2914-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33208951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramirez-Villegas, Juan F.</creatorcontrib><creatorcontrib>Besserve, Michel</creatorcontrib><creatorcontrib>Murayama, Yusuke</creatorcontrib><creatorcontrib>Evrard, Henry C.</creatorcontrib><creatorcontrib>Oeltermann, Axel</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</description><subject>631/378</subject><subject>631/378/2649</subject><subject>692/698</subject><subject>9/30</subject><subject>96/63</subject><subject>Animals</subject><subject>Brain stem</subject><subject>Cholinergics</subject><subject>Chromosome Pairing - physiology</subject><subject>Coupling</subject><subject>Experiments</subject><subject>Female</subject><subject>Geniculate Bodies - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Macaca - physiology</subject><subject>Memory</subject><subject>Memory Consolidation - physiology</subject><subject>Monkeys</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Occipital Lobe - physiology</subject><subject>Plasticity</subject><subject>Pons - physiology</subject><subject>Ripples</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep Stages - physiology</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaL7aZI-y-IULXvQc0nzsZmmb2rQu_nuzdFUQPA3MPPPO8ABwjtE1RlTcRIZzUUBEECRzzCA7AFPMeAFZIfghmCJEBESCFhNwEuMGIZRjzo7BhFKCxDzHU_C8CENb-WaVBZetfdsGrepWVVm_tr3KVGOyLnUrG7Ot79dZG5o-rGzj9VCFoLVvfZ_orfqw8RQcOVVFe7avM_B2f_e6eITLl4enxe0SaspJD0VpSiPmglinDHdcK6OEKJDKlaPW8HJOGVHaYEqEsyhXmgjsSs0UJohSTWfgasxtu_A-2NjL2kdtq0o1NgxRElYQhlNIkdDLP-gmDF2TvksUFzwXiItE4ZHSXYixs062na9V9ykxkjvTcjQtk2m5My1Z2rnYJw9lbc3PxrfaBJARiGnUrGz3e_r_1C8FNIn5</recordid><startdate>20210107</startdate><enddate>20210107</enddate><creator>Ramirez-Villegas, Juan F.</creator><creator>Besserve, Michel</creator><creator>Murayama, Yusuke</creator><creator>Evrard, Henry C.</creator><creator>Oeltermann, Axel</creator><creator>Logothetis, Nikos K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7728-4118</orcidid><orcidid>https://orcid.org/0000-0003-0025-2323</orcidid></search><sort><creationdate>20210107</creationdate><title>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</title><author>Ramirez-Villegas, Juan F. ; Besserve, Michel ; Murayama, Yusuke ; Evrard, Henry C. ; Oeltermann, Axel ; Logothetis, Nikos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8bdbd8982efad7f7cada8860a5af3ed7b9342acd1328fe05ac281fbc4a12033c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378</topic><topic>631/378/2649</topic><topic>692/698</topic><topic>9/30</topic><topic>96/63</topic><topic>Animals</topic><topic>Brain stem</topic><topic>Cholinergics</topic><topic>Chromosome Pairing - physiology</topic><topic>Coupling</topic><topic>Experiments</topic><topic>Female</topic><topic>Geniculate Bodies - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Macaca - physiology</topic><topic>Memory</topic><topic>Memory Consolidation - physiology</topic><topic>Monkeys</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Occipital Lobe - physiology</topic><topic>Plasticity</topic><topic>Pons - physiology</topic><topic>Ripples</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep Stages - physiology</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Villegas, Juan F.</creatorcontrib><creatorcontrib>Besserve, Michel</creatorcontrib><creatorcontrib>Murayama, Yusuke</creatorcontrib><creatorcontrib>Evrard, Henry C.</creatorcontrib><creatorcontrib>Oeltermann, Axel</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Villegas, Juan F.</au><au>Besserve, Michel</au><au>Murayama, Yusuke</au><au>Evrard, Henry C.</au><au>Oeltermann, Axel</au><au>Logothetis, Nikos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of hippocampal theta and ripples with pontogeniculooccipital waves</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-01-07</date><risdate>2021</risdate><volume>589</volume><issue>7840</issue><spage>96</spage><epage>102</epage><pages>96-102</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep 1 . These changes require precise homeostatic control by subcortical neuromodulatory structures 2 . The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis. Studies using multi-structure recordings in macaque monkeys show that distinct phasic pontogeniculooccipital waves modulate hippocampal network events similar to those that underlie the learning and formation of memories during sleep.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33208951</pmid><doi>10.1038/s41586-020-2914-4</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7728-4118</orcidid><orcidid>https://orcid.org/0000-0003-0025-2323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-01, Vol.589 (7840), p.96-102
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2462413426
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/378
631/378/2649
692/698
9/30
96/63
Animals
Brain stem
Cholinergics
Chromosome Pairing - physiology
Coupling
Experiments
Female
Geniculate Bodies - physiology
Hippocampus
Hippocampus - physiology
Homeostasis
Humanities and Social Sciences
Macaca - physiology
Memory
Memory Consolidation - physiology
Monkeys
multidisciplinary
Neuronal Plasticity
Occipital Lobe - physiology
Plasticity
Pons - physiology
Ripples
Science
Science (multidisciplinary)
Sleep
Sleep - physiology
Sleep Stages - physiology
Theta Rhythm - physiology
Theta rhythms
title Coupling of hippocampal theta and ripples with pontogeniculooccipital waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20hippocampal%20theta%20and%20ripples%20with%20pontogeniculooccipital%20waves&rft.jtitle=Nature%20(London)&rft.au=Ramirez-Villegas,%20Juan%20F.&rft.date=2021-01-07&rft.volume=589&rft.issue=7840&rft.spage=96&rft.epage=102&rft.pages=96-102&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2914-4&rft_dat=%3Cproquest_cross%3E2462413426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478758078&rft_id=info:pmid/33208951&rfr_iscdi=true