Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling

Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of clinical pharmacology and therapeutics 2021-02, Vol.59 (2), p.138-146
Hauptverfasser: Liu, Xiangyu, Liu, Chao, Huang, Ruihao, Zhu, Hao, Liu, Qi, Mitra, Sunanda, Wang, Yaning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 2
container_start_page 138
container_title International journal of clinical pharmacology and therapeutics
container_volume 59
creator Liu, Xiangyu
Liu, Chao
Huang, Ruihao
Zhu, Hao
Liu, Qi
Mitra, Sunanda
Wang, Yaning
description Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN, long short-term memory (LSTM) network, is presented to analyze the simulated PK/PD data of a hypothetical drug. The plasma concentration and effect level under one dosing regimen were used to train the LSTM model. The developed LSTM model was used to predict the individual PK/PD data under other dosing regimens. The optimized LSTM model captured temporal dependencies and predicted PD profiles accurately for the simulated indirect PK-PD relationship. The results demonstrated that the generic LSTM model can approximate the complex underlying mechanistic biological processes.
doi_str_mv 10.5414/cp203800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2462411899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480572972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d90381698c02235c8b5636f28092436c43ff61735ee06380b03c10756a72665b3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhWeh2FoFf4EE3LiJzjuZpRRfUNCF7oQwmUzatJlMvJMg_feOtFVwdTiXj8O5B6ELgm8EJ_zW9BSzHOMjNMWKy5QoKSboNIQ1xlSITJ2gCWOUYKX4FH0sfLdMwsrDkA4WXOKs87BNwJoRwHZD0tkRdBtl-PKwSWoPSb_S4LTxmyZeG5MefLXttGtM4nxl26ZbnqHjWrfBnu91ht4f7t_mT-ni5fF5frdIDcuyIa1ULEykyg2mlAmTl0IyWdMcK8qZNJzVtSQZE9ZiGV8rMTMEZ0LqjEopSjZD17vcHvznaMNQuCYY27a6s34MBeWSckJypSJ69Q9d-xG62C5SORYZVRn9CzTgQwBbFz00TsO2ILj4WbmYv-5WjujlPnAsna1-wcPE7BvBMXge</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480572972</pqid></control><display><type>article</type><title>Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Liu, Xiangyu ; Liu, Chao ; Huang, Ruihao ; Zhu, Hao ; Liu, Qi ; Mitra, Sunanda ; Wang, Yaning</creator><creatorcontrib>Liu, Xiangyu ; Liu, Chao ; Huang, Ruihao ; Zhu, Hao ; Liu, Qi ; Mitra, Sunanda ; Wang, Yaning</creatorcontrib><description>Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN, long short-term memory (LSTM) network, is presented to analyze the simulated PK/PD data of a hypothetical drug. The plasma concentration and effect level under one dosing regimen were used to train the LSTM model. The developed LSTM model was used to predict the individual PK/PD data under other dosing regimens. The optimized LSTM model captured temporal dependencies and predicted PD profiles accurately for the simulated indirect PK-PD relationship. The results demonstrated that the generic LSTM model can approximate the complex underlying mechanistic biological processes.</description><identifier>ISSN: 0946-1965</identifier><identifier>DOI: 10.5414/cp203800</identifier><identifier>PMID: 33210994</identifier><language>eng</language><publisher>Germany: Dustri - Verlag Dr. Karl Feistle GmbH &amp; Co. KG</publisher><subject>Algorithms ; Artificial intelligence ; Biomarkers ; Drug dosages ; Humans ; Machine learning ; Memory ; Memory, Short-Term ; Neural networks ; Neural Networks, Computer ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology ; Physiology ; Time series</subject><ispartof>International journal of clinical pharmacology and therapeutics, 2021-02, Vol.59 (2), p.138-146</ispartof><rights>Copyright Dustri - Verlag Dr. Karl Feistle GmbH &amp; Co. KG Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d90381698c02235c8b5636f28092436c43ff61735ee06380b03c10756a72665b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33210994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiangyu</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Huang, Ruihao</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Mitra, Sunanda</creatorcontrib><creatorcontrib>Wang, Yaning</creatorcontrib><title>Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling</title><title>International journal of clinical pharmacology and therapeutics</title><addtitle>Int J Clin Pharmacol Ther</addtitle><description>Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN, long short-term memory (LSTM) network, is presented to analyze the simulated PK/PD data of a hypothetical drug. The plasma concentration and effect level under one dosing regimen were used to train the LSTM model. The developed LSTM model was used to predict the individual PK/PD data under other dosing regimens. The optimized LSTM model captured temporal dependencies and predicted PD profiles accurately for the simulated indirect PK-PD relationship. The results demonstrated that the generic LSTM model can approximate the complex underlying mechanistic biological processes.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Drug dosages</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Memory</subject><subject>Memory, Short-Term</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Time series</subject><issn>0946-1965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkEtLw0AUhWeh2FoFf4EE3LiJzjuZpRRfUNCF7oQwmUzatJlMvJMg_feOtFVwdTiXj8O5B6ELgm8EJ_zW9BSzHOMjNMWKy5QoKSboNIQ1xlSITJ2gCWOUYKX4FH0sfLdMwsrDkA4WXOKs87BNwJoRwHZD0tkRdBtl-PKwSWoPSb_S4LTxmyZeG5MefLXttGtM4nxl26ZbnqHjWrfBnu91ht4f7t_mT-ni5fF5frdIDcuyIa1ULEykyg2mlAmTl0IyWdMcK8qZNJzVtSQZE9ZiGV8rMTMEZ0LqjEopSjZD17vcHvznaMNQuCYY27a6s34MBeWSckJypSJ69Q9d-xG62C5SORYZVRn9CzTgQwBbFz00TsO2ILj4WbmYv-5WjujlPnAsna1-wcPE7BvBMXge</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Liu, Xiangyu</creator><creator>Liu, Chao</creator><creator>Huang, Ruihao</creator><creator>Zhu, Hao</creator><creator>Liu, Qi</creator><creator>Mitra, Sunanda</creator><creator>Wang, Yaning</creator><general>Dustri - Verlag Dr. Karl Feistle GmbH &amp; Co. KG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>202102</creationdate><title>Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling</title><author>Liu, Xiangyu ; Liu, Chao ; Huang, Ruihao ; Zhu, Hao ; Liu, Qi ; Mitra, Sunanda ; Wang, Yaning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d90381698c02235c8b5636f28092436c43ff61735ee06380b03c10756a72665b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Drug dosages</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Memory</topic><topic>Memory, Short-Term</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangyu</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Huang, Ruihao</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Mitra, Sunanda</creatorcontrib><creatorcontrib>Wang, Yaning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangyu</au><au>Liu, Chao</au><au>Huang, Ruihao</au><au>Zhu, Hao</au><au>Liu, Qi</au><au>Mitra, Sunanda</au><au>Wang, Yaning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling</atitle><jtitle>International journal of clinical pharmacology and therapeutics</jtitle><addtitle>Int J Clin Pharmacol Ther</addtitle><date>2021-02</date><risdate>2021</risdate><volume>59</volume><issue>2</issue><spage>138</spage><epage>146</epage><pages>138-146</pages><issn>0946-1965</issn><abstract>Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN, long short-term memory (LSTM) network, is presented to analyze the simulated PK/PD data of a hypothetical drug. The plasma concentration and effect level under one dosing regimen were used to train the LSTM model. The developed LSTM model was used to predict the individual PK/PD data under other dosing regimens. The optimized LSTM model captured temporal dependencies and predicted PD profiles accurately for the simulated indirect PK-PD relationship. The results demonstrated that the generic LSTM model can approximate the complex underlying mechanistic biological processes.</abstract><cop>Germany</cop><pub>Dustri - Verlag Dr. Karl Feistle GmbH &amp; Co. KG</pub><pmid>33210994</pmid><doi>10.5414/cp203800</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-1965
ispartof International journal of clinical pharmacology and therapeutics, 2021-02, Vol.59 (2), p.138-146
issn 0946-1965
language eng
recordid cdi_proquest_miscellaneous_2462411899
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Biomarkers
Drug dosages
Humans
Machine learning
Memory
Memory, Short-Term
Neural networks
Neural Networks, Computer
Pharmacodynamics
Pharmacokinetics
Pharmacology
Physiology
Time series
title Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20short-term%20memory%20recurrent%20neural%20network%20for%20pharmacokinetic-pharmacodynamic%20modeling&rft.jtitle=International%20journal%20of%20clinical%20pharmacology%20and%20therapeutics&rft.au=Liu,%20Xiangyu&rft.date=2021-02&rft.volume=59&rft.issue=2&rft.spage=138&rft.epage=146&rft.pages=138-146&rft.issn=0946-1965&rft_id=info:doi/10.5414/cp203800&rft_dat=%3Cproquest_cross%3E2480572972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480572972&rft_id=info:pmid/33210994&rfr_iscdi=true