Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)
OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 1 |
container_start_page | 317 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 41 |
creator | Dunn, Louise L. Kong, Stephanie M.Y. Tumanov, Sergey Chen, Weiyu Cantley, James Ayer, Anita Maghzal, Ghassan J. Midwinter, Robyn G. Chan, Kim H. Ng, Martin K.C. Stocker, Roland |
description | OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood.
APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia.
CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization. |
doi_str_mv | 10.1161/ATVBAHA.120.315393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2462409222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462409222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqXwAhyQj-3Bi__FmxxDxZJIRUWicLXsZNJ1SeLFduhuD30nXoRnwqtdOPYwmhnN932H32TZW0oWlEr6vrr5_qGqqwVlZMFpzkv-LDulORNYSC6fp5ksS5xLwU6yVyHcEUIEY-RldsI5SycuTrPHenRbis5rGAFdb3e3MOkAmF6gL95FaGNA1a22U4ioCe0aRqvxZ-isjtChZrqb_Q79shp9jdrYwT7oaN2EXI_qZoXpn98pebdx2-Rqpm5urRkArXQbnd9fL15nL3o9BHhz7GfZt9XHm8saX11_ai6rK9yKouC4LLQoQRsQXaGXhaAsF4ZC3xpOlpIWnVwSmVPKe226vM9NZ0rZtcwIBoaXJT_Lzg-5G-9-zhCiGm1oYRj0BG4OignJBCkZY0nKDtLWuxA89Grj7aj9TlGi9tzVkbtK3NWBezK9O-bPZoTuv-Uf6CSQB8G9GyL48GOY78GrNeghrp9OFk8Y9y_lkuSYEUYJTStOxSn_C-Xxn7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462409222</pqid></control><display><type>article</type><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</creator><creatorcontrib>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</creatorcontrib><description>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood.
APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia.
CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.120.315393</identifier><identifier>PMID: 33207934</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Animals ; Cell Hypoxia ; Cells, Cultured ; Disease Models, Animal ; Energy Metabolism ; Female ; Fibroblasts - enzymology ; Fibroblasts - pathology ; Glucose - metabolism ; Heme Oxygenase-1 - deficiency ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Hindlimb ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Ischemia - enzymology ; Ischemia - genetics ; Ischemia - pathology ; Male ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Knockout ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Necrosis ; Protein Stability ; Regional Blood Flow ; Reperfusion Injury - genetics ; Reperfusion Injury - pathology ; Reperfusion Injury - prevention & control</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330</ispartof><rights>Lippincott Williams & Wilkins</rights><rights>2020 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</citedby><cites>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</cites><orcidid>0000-0003-2509-1271 ; 0000-0002-7414-6681 ; 0000-0002-0557-3153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33207934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, Louise L.</creatorcontrib><creatorcontrib>Kong, Stephanie M.Y.</creatorcontrib><creatorcontrib>Tumanov, Sergey</creatorcontrib><creatorcontrib>Chen, Weiyu</creatorcontrib><creatorcontrib>Cantley, James</creatorcontrib><creatorcontrib>Ayer, Anita</creatorcontrib><creatorcontrib>Maghzal, Ghassan J.</creatorcontrib><creatorcontrib>Midwinter, Robyn G.</creatorcontrib><creatorcontrib>Chan, Kim H.</creatorcontrib><creatorcontrib>Ng, Martin K.C.</creatorcontrib><creatorcontrib>Stocker, Roland</creatorcontrib><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood.
APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia.
CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</description><subject>Animals</subject><subject>Cell Hypoxia</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Fibroblasts - enzymology</subject><subject>Fibroblasts - pathology</subject><subject>Glucose - metabolism</subject><subject>Heme Oxygenase-1 - deficiency</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Hindlimb</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Ischemia - enzymology</subject><subject>Ischemia - genetics</subject><subject>Ischemia - pathology</subject><subject>Male</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Necrosis</subject><subject>Protein Stability</subject><subject>Regional Blood Flow</subject><subject>Reperfusion Injury - genetics</subject><subject>Reperfusion Injury - pathology</subject><subject>Reperfusion Injury - prevention & control</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxiMEoqXwAhyQj-3Bi__FmxxDxZJIRUWicLXsZNJ1SeLFduhuD30nXoRnwqtdOPYwmhnN932H32TZW0oWlEr6vrr5_qGqqwVlZMFpzkv-LDulORNYSC6fp5ksS5xLwU6yVyHcEUIEY-RldsI5SycuTrPHenRbis5rGAFdb3e3MOkAmF6gL95FaGNA1a22U4ioCe0aRqvxZ-isjtChZrqb_Q79shp9jdrYwT7oaN2EXI_qZoXpn98pebdx2-Rqpm5urRkArXQbnd9fL15nL3o9BHhz7GfZt9XHm8saX11_ai6rK9yKouC4LLQoQRsQXaGXhaAsF4ZC3xpOlpIWnVwSmVPKe226vM9NZ0rZtcwIBoaXJT_Lzg-5G-9-zhCiGm1oYRj0BG4OignJBCkZY0nKDtLWuxA89Grj7aj9TlGi9tzVkbtK3NWBezK9O-bPZoTuv-Uf6CSQB8G9GyL48GOY78GrNeghrp9OFk8Y9y_lkuSYEUYJTStOxSn_C-Xxn7A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dunn, Louise L.</creator><creator>Kong, Stephanie M.Y.</creator><creator>Tumanov, Sergey</creator><creator>Chen, Weiyu</creator><creator>Cantley, James</creator><creator>Ayer, Anita</creator><creator>Maghzal, Ghassan J.</creator><creator>Midwinter, Robyn G.</creator><creator>Chan, Kim H.</creator><creator>Ng, Martin K.C.</creator><creator>Stocker, Roland</creator><general>Lippincott Williams & Wilkins</general><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2509-1271</orcidid><orcidid>https://orcid.org/0000-0002-7414-6681</orcidid><orcidid>https://orcid.org/0000-0002-0557-3153</orcidid></search><sort><creationdate>20210101</creationdate><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><author>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cell Hypoxia</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Fibroblasts - enzymology</topic><topic>Fibroblasts - pathology</topic><topic>Glucose - metabolism</topic><topic>Heme Oxygenase-1 - deficiency</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Hindlimb</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Ischemia - enzymology</topic><topic>Ischemia - genetics</topic><topic>Ischemia - pathology</topic><topic>Male</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Necrosis</topic><topic>Protein Stability</topic><topic>Regional Blood Flow</topic><topic>Reperfusion Injury - genetics</topic><topic>Reperfusion Injury - pathology</topic><topic>Reperfusion Injury - prevention & control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, Louise L.</creatorcontrib><creatorcontrib>Kong, Stephanie M.Y.</creatorcontrib><creatorcontrib>Tumanov, Sergey</creatorcontrib><creatorcontrib>Chen, Weiyu</creatorcontrib><creatorcontrib>Cantley, James</creatorcontrib><creatorcontrib>Ayer, Anita</creatorcontrib><creatorcontrib>Maghzal, Ghassan J.</creatorcontrib><creatorcontrib>Midwinter, Robyn G.</creatorcontrib><creatorcontrib>Chan, Kim H.</creatorcontrib><creatorcontrib>Ng, Martin K.C.</creatorcontrib><creatorcontrib>Stocker, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, Louise L.</au><au>Kong, Stephanie M.Y.</au><au>Tumanov, Sergey</au><au>Chen, Weiyu</au><au>Cantley, James</au><au>Ayer, Anita</au><au>Maghzal, Ghassan J.</au><au>Midwinter, Robyn G.</au><au>Chan, Kim H.</au><au>Ng, Martin K.C.</au><au>Stocker, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>1</issue><spage>317</spage><epage>330</epage><pages>317-330</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood.
APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia.
CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>33207934</pmid><doi>10.1161/ATVBAHA.120.315393</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2509-1271</orcidid><orcidid>https://orcid.org/0000-0002-7414-6681</orcidid><orcidid>https://orcid.org/0000-0002-0557-3153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_2462409222 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Cell Hypoxia Cells, Cultured Disease Models, Animal Energy Metabolism Female Fibroblasts - enzymology Fibroblasts - pathology Glucose - metabolism Heme Oxygenase-1 - deficiency Heme Oxygenase-1 - genetics Heme Oxygenase-1 - metabolism Hindlimb Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Ischemia - enzymology Ischemia - genetics Ischemia - pathology Male Membrane Proteins - deficiency Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Inbred BALB C Mice, Knockout Muscle, Skeletal - blood supply Muscle, Skeletal - enzymology Muscle, Skeletal - pathology Necrosis Protein Stability Regional Blood Flow Reperfusion Injury - genetics Reperfusion Injury - pathology Reperfusion Injury - prevention & control |
title | Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hmox1%20(Heme%20Oxygenase-1)%20Protects%20Against%20Ischemia-Mediated%20Injury%20via%20Stabilization%20of%20HIF-1%CE%B1%20(Hypoxia-Inducible%20Factor-1%CE%B1)&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Dunn,%20Louise%20L.&rft.date=2021-01-01&rft.volume=41&rft.issue=1&rft.spage=317&rft.epage=330&rft.pages=317-330&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.120.315393&rft_dat=%3Cproquest_cross%3E2462409222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462409222&rft_id=info:pmid/33207934&rfr_iscdi=true |