Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)

OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330
Hauptverfasser: Dunn, Louise L., Kong, Stephanie M.Y., Tumanov, Sergey, Chen, Weiyu, Cantley, James, Ayer, Anita, Maghzal, Ghassan J., Midwinter, Robyn G., Chan, Kim H., Ng, Martin K.C., Stocker, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 1
container_start_page 317
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 41
creator Dunn, Louise L.
Kong, Stephanie M.Y.
Tumanov, Sergey
Chen, Weiyu
Cantley, James
Ayer, Anita
Maghzal, Ghassan J.
Midwinter, Robyn G.
Chan, Kim H.
Ng, Martin K.C.
Stocker, Roland
description OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia. CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.
doi_str_mv 10.1161/ATVBAHA.120.315393
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2462409222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462409222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqXwAhyQj-3Bi__FmxxDxZJIRUWicLXsZNJ1SeLFduhuD30nXoRnwqtdOPYwmhnN932H32TZW0oWlEr6vrr5_qGqqwVlZMFpzkv-LDulORNYSC6fp5ksS5xLwU6yVyHcEUIEY-RldsI5SycuTrPHenRbis5rGAFdb3e3MOkAmF6gL95FaGNA1a22U4ioCe0aRqvxZ-isjtChZrqb_Q79shp9jdrYwT7oaN2EXI_qZoXpn98pebdx2-Rqpm5urRkArXQbnd9fL15nL3o9BHhz7GfZt9XHm8saX11_ai6rK9yKouC4LLQoQRsQXaGXhaAsF4ZC3xpOlpIWnVwSmVPKe226vM9NZ0rZtcwIBoaXJT_Lzg-5G-9-zhCiGm1oYRj0BG4OignJBCkZY0nKDtLWuxA89Grj7aj9TlGi9tzVkbtK3NWBezK9O-bPZoTuv-Uf6CSQB8G9GyL48GOY78GrNeghrp9OFk8Y9y_lkuSYEUYJTStOxSn_C-Xxn7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462409222</pqid></control><display><type>article</type><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</creator><creatorcontrib>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</creatorcontrib><description>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia. CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.120.315393</identifier><identifier>PMID: 33207934</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Animals ; Cell Hypoxia ; Cells, Cultured ; Disease Models, Animal ; Energy Metabolism ; Female ; Fibroblasts - enzymology ; Fibroblasts - pathology ; Glucose - metabolism ; Heme Oxygenase-1 - deficiency ; Heme Oxygenase-1 - genetics ; Heme Oxygenase-1 - metabolism ; Hindlimb ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Ischemia - enzymology ; Ischemia - genetics ; Ischemia - pathology ; Male ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Knockout ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Necrosis ; Protein Stability ; Regional Blood Flow ; Reperfusion Injury - genetics ; Reperfusion Injury - pathology ; Reperfusion Injury - prevention &amp; control</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>2020 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</citedby><cites>FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</cites><orcidid>0000-0003-2509-1271 ; 0000-0002-7414-6681 ; 0000-0002-0557-3153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33207934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, Louise L.</creatorcontrib><creatorcontrib>Kong, Stephanie M.Y.</creatorcontrib><creatorcontrib>Tumanov, Sergey</creatorcontrib><creatorcontrib>Chen, Weiyu</creatorcontrib><creatorcontrib>Cantley, James</creatorcontrib><creatorcontrib>Ayer, Anita</creatorcontrib><creatorcontrib>Maghzal, Ghassan J.</creatorcontrib><creatorcontrib>Midwinter, Robyn G.</creatorcontrib><creatorcontrib>Chan, Kim H.</creatorcontrib><creatorcontrib>Ng, Martin K.C.</creatorcontrib><creatorcontrib>Stocker, Roland</creatorcontrib><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia. CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</description><subject>Animals</subject><subject>Cell Hypoxia</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Fibroblasts - enzymology</subject><subject>Fibroblasts - pathology</subject><subject>Glucose - metabolism</subject><subject>Heme Oxygenase-1 - deficiency</subject><subject>Heme Oxygenase-1 - genetics</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Hindlimb</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Ischemia - enzymology</subject><subject>Ischemia - genetics</subject><subject>Ischemia - pathology</subject><subject>Male</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Necrosis</subject><subject>Protein Stability</subject><subject>Regional Blood Flow</subject><subject>Reperfusion Injury - genetics</subject><subject>Reperfusion Injury - pathology</subject><subject>Reperfusion Injury - prevention &amp; control</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxiMEoqXwAhyQj-3Bi__FmxxDxZJIRUWicLXsZNJ1SeLFduhuD30nXoRnwqtdOPYwmhnN932H32TZW0oWlEr6vrr5_qGqqwVlZMFpzkv-LDulORNYSC6fp5ksS5xLwU6yVyHcEUIEY-RldsI5SycuTrPHenRbis5rGAFdb3e3MOkAmF6gL95FaGNA1a22U4ioCe0aRqvxZ-isjtChZrqb_Q79shp9jdrYwT7oaN2EXI_qZoXpn98pebdx2-Rqpm5urRkArXQbnd9fL15nL3o9BHhz7GfZt9XHm8saX11_ai6rK9yKouC4LLQoQRsQXaGXhaAsF4ZC3xpOlpIWnVwSmVPKe226vM9NZ0rZtcwIBoaXJT_Lzg-5G-9-zhCiGm1oYRj0BG4OignJBCkZY0nKDtLWuxA89Grj7aj9TlGi9tzVkbtK3NWBezK9O-bPZoTuv-Uf6CSQB8G9GyL48GOY78GrNeghrp9OFk8Y9y_lkuSYEUYJTStOxSn_C-Xxn7A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Dunn, Louise L.</creator><creator>Kong, Stephanie M.Y.</creator><creator>Tumanov, Sergey</creator><creator>Chen, Weiyu</creator><creator>Cantley, James</creator><creator>Ayer, Anita</creator><creator>Maghzal, Ghassan J.</creator><creator>Midwinter, Robyn G.</creator><creator>Chan, Kim H.</creator><creator>Ng, Martin K.C.</creator><creator>Stocker, Roland</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2509-1271</orcidid><orcidid>https://orcid.org/0000-0002-7414-6681</orcidid><orcidid>https://orcid.org/0000-0002-0557-3153</orcidid></search><sort><creationdate>20210101</creationdate><title>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</title><author>Dunn, Louise L. ; Kong, Stephanie M.Y. ; Tumanov, Sergey ; Chen, Weiyu ; Cantley, James ; Ayer, Anita ; Maghzal, Ghassan J. ; Midwinter, Robyn G. ; Chan, Kim H. ; Ng, Martin K.C. ; Stocker, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4883-98a49eabe4d8a7841254b1efcb307618d67065113fabd5f5bdb96dc2b42eb3993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cell Hypoxia</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Fibroblasts - enzymology</topic><topic>Fibroblasts - pathology</topic><topic>Glucose - metabolism</topic><topic>Heme Oxygenase-1 - deficiency</topic><topic>Heme Oxygenase-1 - genetics</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Hindlimb</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Ischemia - enzymology</topic><topic>Ischemia - genetics</topic><topic>Ischemia - pathology</topic><topic>Male</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Necrosis</topic><topic>Protein Stability</topic><topic>Regional Blood Flow</topic><topic>Reperfusion Injury - genetics</topic><topic>Reperfusion Injury - pathology</topic><topic>Reperfusion Injury - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, Louise L.</creatorcontrib><creatorcontrib>Kong, Stephanie M.Y.</creatorcontrib><creatorcontrib>Tumanov, Sergey</creatorcontrib><creatorcontrib>Chen, Weiyu</creatorcontrib><creatorcontrib>Cantley, James</creatorcontrib><creatorcontrib>Ayer, Anita</creatorcontrib><creatorcontrib>Maghzal, Ghassan J.</creatorcontrib><creatorcontrib>Midwinter, Robyn G.</creatorcontrib><creatorcontrib>Chan, Kim H.</creatorcontrib><creatorcontrib>Ng, Martin K.C.</creatorcontrib><creatorcontrib>Stocker, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, Louise L.</au><au>Kong, Stephanie M.Y.</au><au>Tumanov, Sergey</au><au>Chen, Weiyu</au><au>Cantley, James</au><au>Ayer, Anita</au><au>Maghzal, Ghassan J.</au><au>Midwinter, Robyn G.</au><au>Chan, Kim H.</au><au>Ng, Martin K.C.</au><au>Stocker, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>1</issue><spage>317</spage><epage>330</epage><pages>317-330</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE:Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body’s response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. APPROACH AND RESULTS:Hmox1 deficient (Hmox1) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1 mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1 mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1 fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1 fibroblasts in response to hypoxia. CONCLUSIONS:Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1’s protection against ischemic injury independent of neovascularization.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>33207934</pmid><doi>10.1161/ATVBAHA.120.315393</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2509-1271</orcidid><orcidid>https://orcid.org/0000-0002-7414-6681</orcidid><orcidid>https://orcid.org/0000-0002-0557-3153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2021-01, Vol.41 (1), p.317-330
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_2462409222
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Cell Hypoxia
Cells, Cultured
Disease Models, Animal
Energy Metabolism
Female
Fibroblasts - enzymology
Fibroblasts - pathology
Glucose - metabolism
Heme Oxygenase-1 - deficiency
Heme Oxygenase-1 - genetics
Heme Oxygenase-1 - metabolism
Hindlimb
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Ischemia - enzymology
Ischemia - genetics
Ischemia - pathology
Male
Membrane Proteins - deficiency
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred BALB C
Mice, Knockout
Muscle, Skeletal - blood supply
Muscle, Skeletal - enzymology
Muscle, Skeletal - pathology
Necrosis
Protein Stability
Regional Blood Flow
Reperfusion Injury - genetics
Reperfusion Injury - pathology
Reperfusion Injury - prevention & control
title Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hmox1%20(Heme%20Oxygenase-1)%20Protects%20Against%20Ischemia-Mediated%20Injury%20via%20Stabilization%20of%20HIF-1%CE%B1%20(Hypoxia-Inducible%20Factor-1%CE%B1)&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Dunn,%20Louise%20L.&rft.date=2021-01-01&rft.volume=41&rft.issue=1&rft.spage=317&rft.epage=330&rft.pages=317-330&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.120.315393&rft_dat=%3Cproquest_cross%3E2462409222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462409222&rft_id=info:pmid/33207934&rfr_iscdi=true