Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films

Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1985-01, Vol.57 (4), p.1214-1238
Hauptverfasser: DIMARIA, D. J, THEIS, T. N, KIRTLEY, J. R, PESAVENTO, F. L, DONG, D. W, BRORSON, S. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 4
container_start_page 1214
container_title Journal of applied physics
container_volume 57
creator DIMARIA, D. J
THEIS, T. N
KIRTLEY, J. R
PESAVENTO, F. L
DONG, D. W
BRORSON, S. D
description Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching ≳4 eV with respect to the bottom of the SiO2 conduction band edge. Off-stoichiometric SiO2 (OS-SiO2) layers are shown to behave similarly to very thin SiO2(≲70 Å in thickness) with a transition occurring from ‘‘cool’’ to ‘‘hot’’ electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS-SiO2 material to Fowler-Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the electronic field-induced heating in the SiO2 and preventing current runaway and impact ionization is discussed. Scattering may be due to disorder, trapped charges, and acoustical phonons, as well as longitudinal optical phonons.
doi_str_mv 10.1063/1.334518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24622528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24622528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-45c1fdd7a77004b250ec56809a47d7790f6d5d1a8d997fe8205f688c3b3984d33</originalsourceid><addsrcrecordid>eNpl0MtKAzEYBeAgCtYq-AizEHEz9c9tkiyl1AsUdKHrkOZiI5lJTaagb2-lxY2rA4ePszgIXWKYYejoLZ5RyjiWR2iCQapWcA7HaAJAcCuVUKforNYPAIwlVRP0skjejiUPzdqbMQ7vTRyaGlO0u8rF_BWdb8zgmhxCW8cc7Trm3o8l2n8sxNTXc3QSTKr-4pBT9Ha_eJ0_tsvnh6f53bK1lOOxZdzi4JwwQgCwFeHgLe8kKMOEE0JB6Bx32EinlAheEuChk9LSFVWSOUqn6Hq_uyn5c-vrqPtYrU_JDD5vqyasI4QTuYM3e2hLrrX4oDcl9qZ8awz69zKN9f6yHb06bJpqTQrFDDbWPy9Zhwkh9AfdD2pJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24622528</pqid></control><display><type>article</type><title>Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films</title><source>AIP Digital Archive</source><creator>DIMARIA, D. J ; THEIS, T. N ; KIRTLEY, J. R ; PESAVENTO, F. L ; DONG, D. W ; BRORSON, S. D</creator><creatorcontrib>DIMARIA, D. J ; THEIS, T. N ; KIRTLEY, J. R ; PESAVENTO, F. L ; DONG, D. W ; BRORSON, S. D</creatorcontrib><description>Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching ≳4 eV with respect to the bottom of the SiO2 conduction band edge. Off-stoichiometric SiO2 (OS-SiO2) layers are shown to behave similarly to very thin SiO2(≲70 Å in thickness) with a transition occurring from ‘‘cool’’ to ‘‘hot’’ electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS-SiO2 material to Fowler-Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the electronic field-induced heating in the SiO2 and preventing current runaway and impact ionization is discussed. Scattering may be due to disorder, trapped charges, and acoustical phonons, as well as longitudinal optical phonons.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.334518</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Interfaces ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of applied physics, 1985-01, Vol.57 (4), p.1214-1238</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-45c1fdd7a77004b250ec56809a47d7790f6d5d1a8d997fe8205f688c3b3984d33</citedby><cites>FETCH-LOGICAL-c351t-45c1fdd7a77004b250ec56809a47d7790f6d5d1a8d997fe8205f688c3b3984d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8461222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DIMARIA, D. J</creatorcontrib><creatorcontrib>THEIS, T. N</creatorcontrib><creatorcontrib>KIRTLEY, J. R</creatorcontrib><creatorcontrib>PESAVENTO, F. L</creatorcontrib><creatorcontrib>DONG, D. W</creatorcontrib><creatorcontrib>BRORSON, S. D</creatorcontrib><title>Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films</title><title>Journal of applied physics</title><description>Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching ≳4 eV with respect to the bottom of the SiO2 conduction band edge. Off-stoichiometric SiO2 (OS-SiO2) layers are shown to behave similarly to very thin SiO2(≲70 Å in thickness) with a transition occurring from ‘‘cool’’ to ‘‘hot’’ electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS-SiO2 material to Fowler-Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the electronic field-induced heating in the SiO2 and preventing current runaway and impact ionization is discussed. Scattering may be due to disorder, trapped charges, and acoustical phonons, as well as longitudinal optical phonons.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Interfaces</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpl0MtKAzEYBeAgCtYq-AizEHEz9c9tkiyl1AsUdKHrkOZiI5lJTaagb2-lxY2rA4ePszgIXWKYYejoLZ5RyjiWR2iCQapWcA7HaAJAcCuVUKforNYPAIwlVRP0skjejiUPzdqbMQ7vTRyaGlO0u8rF_BWdb8zgmhxCW8cc7Trm3o8l2n8sxNTXc3QSTKr-4pBT9Ha_eJ0_tsvnh6f53bK1lOOxZdzi4JwwQgCwFeHgLe8kKMOEE0JB6Bx32EinlAheEuChk9LSFVWSOUqn6Hq_uyn5c-vrqPtYrU_JDD5vqyasI4QTuYM3e2hLrrX4oDcl9qZ8awz69zKN9f6yHb06bJpqTQrFDDbWPy9Zhwkh9AfdD2pJ</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>DIMARIA, D. J</creator><creator>THEIS, T. N</creator><creator>KIRTLEY, J. R</creator><creator>PESAVENTO, F. L</creator><creator>DONG, D. W</creator><creator>BRORSON, S. D</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19850101</creationdate><title>Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films</title><author>DIMARIA, D. J ; THEIS, T. N ; KIRTLEY, J. R ; PESAVENTO, F. L ; DONG, D. W ; BRORSON, S. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-45c1fdd7a77004b250ec56809a47d7790f6d5d1a8d997fe8205f688c3b3984d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Interfaces</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DIMARIA, D. J</creatorcontrib><creatorcontrib>THEIS, T. N</creatorcontrib><creatorcontrib>KIRTLEY, J. R</creatorcontrib><creatorcontrib>PESAVENTO, F. L</creatorcontrib><creatorcontrib>DONG, D. W</creatorcontrib><creatorcontrib>BRORSON, S. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DIMARIA, D. J</au><au>THEIS, T. N</au><au>KIRTLEY, J. R</au><au>PESAVENTO, F. L</au><au>DONG, D. W</au><au>BRORSON, S. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films</atitle><jtitle>Journal of applied physics</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>57</volume><issue>4</issue><spage>1214</spage><epage>1238</epage><pages>1214-1238</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electron heating in silicon dioxide (SiO2) at electric fields ≲5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching ≳4 eV with respect to the bottom of the SiO2 conduction band edge. Off-stoichiometric SiO2 (OS-SiO2) layers are shown to behave similarly to very thin SiO2(≲70 Å in thickness) with a transition occurring from ‘‘cool’’ to ‘‘hot’’ electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS-SiO2 material to Fowler-Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the electronic field-induced heating in the SiO2 and preventing current runaway and impact ionization is discussed. Scattering may be due to disorder, trapped charges, and acoustical phonons, as well as longitudinal optical phonons.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.334518</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1985-01, Vol.57 (4), p.1214-1238
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_24622528
source AIP Digital Archive
subjects Applied sciences
Electronics
Exact sciences and technology
Interfaces
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20heating%20in%20silicon%20dioxide%20and%20off-stoichiometric%20silicon%20dioxide%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=DIMARIA,%20D.%20J&rft.date=1985-01-01&rft.volume=57&rft.issue=4&rft.spage=1214&rft.epage=1238&rft.pages=1214-1238&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.334518&rft_dat=%3Cproquest_cross%3E24622528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24622528&rft_id=info:pmid/&rfr_iscdi=true