Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis
Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2020-10, Vol.85 (10), p.1159-1168 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 10 |
container_start_page | 1159 |
container_title | Biochemistry (Moscow) |
container_volume | 85 |
creator | Oliverio, S. Beltran, J. S. O. Occhigrossi, L. Bordoni, V. Agrati, C. D’Eletto, M. Rossin, F. Borelli, P. Amarante-Mendes, G. P. Demidov, O. Barlev, N. A. Piacentini, M. |
description | Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated
in vivo
involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis. |
doi_str_mv | 10.1134/S0006297920100041 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461859477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639701115</galeid><sourcerecordid>A639701115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSZmxvXF8rFbAVqrUQ5dz5GQni6vEXmynUv89jrYU8SUf7PE87-sZD2NvES4Qpfp4CwC1MNoIwHJU-IytsIamkqDgOVst6WrJn7FXKd2VUICRL9mZlAJEEa3YzS5anw7jnO3kvE3Edw9H4oK7xK_8fRjvac-d5_kb8S1NNodjcJRdz28zTXxD45j4NkwUUrbJpdfsxWDHRG8e93P29fOn3WZbXd98udpcXle9NJgrDYPujdKdUcIaqWpBXQNoO7GGusNByUYNGgihxoHM2jRWEXWlrxobo7U8Zx9OvscYvs-Ucju51JdqrKcwp1Ys4Lq8sKDv_0Dvwhx9qa5QGptGQvmVJ-pgR2qdH0KOtl9M28taGg2IuC7UxT-osvY0uT54Gly5_02AJ0EfQ0qRhvYY3WTjQ4vQLkNs_xpi0bx7LHjuJto_KX5OrQDiBKSS8geKvzr6v-sPYYKhaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471883009</pqid></control><display><type>article</type><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</creator><creatorcontrib>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</creatorcontrib><description>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated
in vivo
involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920100041</identifier><identifier>PMID: 33202201</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Animals ; Autophagy ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Bone marrow ; Cell death ; Cell Differentiation ; Cells, Cultured ; Deprivation ; Differentiation ; Female ; GTP-Binding Proteins - physiology ; Hematopoiesis ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Hematopoietic system ; Homeostasis ; In vivo methods and tests ; Life Sciences ; MAP Kinase Signaling System ; Metabolic pathways ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microbiology ; Osteoprogenitor cells ; Phagocytosis ; Progenitor cells ; RhoA protein ; Stem cell transplantation ; Stem cells ; Transglutaminase 2 ; Transglutaminases - physiology</subject><ispartof>Biochemistry (Moscow), 2020-10, Vol.85 (10), p.1159-1168</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920100041$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920100041$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33202201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliverio, S.</creatorcontrib><creatorcontrib>Beltran, J. S. O.</creatorcontrib><creatorcontrib>Occhigrossi, L.</creatorcontrib><creatorcontrib>Bordoni, V.</creatorcontrib><creatorcontrib>Agrati, C.</creatorcontrib><creatorcontrib>D’Eletto, M.</creatorcontrib><creatorcontrib>Rossin, F.</creatorcontrib><creatorcontrib>Borelli, P.</creatorcontrib><creatorcontrib>Amarante-Mendes, G. P.</creatorcontrib><creatorcontrib>Demidov, O.</creatorcontrib><creatorcontrib>Barlev, N. A.</creatorcontrib><creatorcontrib>Piacentini, M.</creatorcontrib><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated
in vivo
involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Bone marrow</subject><subject>Cell death</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Deprivation</subject><subject>Differentiation</subject><subject>Female</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic system</subject><subject>Homeostasis</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>MAP Kinase Signaling System</subject><subject>Metabolic pathways</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microbiology</subject><subject>Osteoprogenitor cells</subject><subject>Phagocytosis</subject><subject>Progenitor cells</subject><subject>RhoA protein</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transglutaminase 2</subject><subject>Transglutaminases - physiology</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSZmxvXF8rFbAVqrUQ5dz5GQni6vEXmynUv89jrYU8SUf7PE87-sZD2NvES4Qpfp4CwC1MNoIwHJU-IytsIamkqDgOVst6WrJn7FXKd2VUICRL9mZlAJEEa3YzS5anw7jnO3kvE3Edw9H4oK7xK_8fRjvac-d5_kb8S1NNodjcJRdz28zTXxD45j4NkwUUrbJpdfsxWDHRG8e93P29fOn3WZbXd98udpcXle9NJgrDYPujdKdUcIaqWpBXQNoO7GGusNByUYNGgihxoHM2jRWEXWlrxobo7U8Zx9OvscYvs-Ucju51JdqrKcwp1Ys4Lq8sKDv_0Dvwhx9qa5QGptGQvmVJ-pgR2qdH0KOtl9M28taGg2IuC7UxT-osvY0uT54Gly5_02AJ0EfQ0qRhvYY3WTjQ4vQLkNs_xpi0bx7LHjuJto_KX5OrQDiBKSS8geKvzr6v-sPYYKhaQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Oliverio, S.</creator><creator>Beltran, J. S. O.</creator><creator>Occhigrossi, L.</creator><creator>Bordoni, V.</creator><creator>Agrati, C.</creator><creator>D’Eletto, M.</creator><creator>Rossin, F.</creator><creator>Borelli, P.</creator><creator>Amarante-Mendes, G. P.</creator><creator>Demidov, O.</creator><creator>Barlev, N. A.</creator><creator>Piacentini, M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><author>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Bone marrow</topic><topic>Cell death</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Deprivation</topic><topic>Differentiation</topic><topic>Female</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic system</topic><topic>Homeostasis</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>MAP Kinase Signaling System</topic><topic>Metabolic pathways</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microbiology</topic><topic>Osteoprogenitor cells</topic><topic>Phagocytosis</topic><topic>Progenitor cells</topic><topic>RhoA protein</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transglutaminase 2</topic><topic>Transglutaminases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliverio, S.</creatorcontrib><creatorcontrib>Beltran, J. S. O.</creatorcontrib><creatorcontrib>Occhigrossi, L.</creatorcontrib><creatorcontrib>Bordoni, V.</creatorcontrib><creatorcontrib>Agrati, C.</creatorcontrib><creatorcontrib>D’Eletto, M.</creatorcontrib><creatorcontrib>Rossin, F.</creatorcontrib><creatorcontrib>Borelli, P.</creatorcontrib><creatorcontrib>Amarante-Mendes, G. P.</creatorcontrib><creatorcontrib>Demidov, O.</creatorcontrib><creatorcontrib>Barlev, N. A.</creatorcontrib><creatorcontrib>Piacentini, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliverio, S.</au><au>Beltran, J. S. O.</au><au>Occhigrossi, L.</au><au>Bordoni, V.</au><au>Agrati, C.</au><au>D’Eletto, M.</au><au>Rossin, F.</au><au>Borelli, P.</au><au>Amarante-Mendes, G. P.</au><au>Demidov, O.</au><au>Barlev, N. A.</au><au>Piacentini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>85</volume><issue>10</issue><spage>1159</spage><epage>1168</epage><pages>1159-1168</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated
in vivo
involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>33202201</pmid><doi>10.1134/S0006297920100041</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2020-10, Vol.85 (10), p.1159-1168 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_2461859477 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Autophagy Biochemistry Biological activity Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Bone marrow Cell death Cell Differentiation Cells, Cultured Deprivation Differentiation Female GTP-Binding Proteins - physiology Hematopoiesis Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Hematopoietic system Homeostasis In vivo methods and tests Life Sciences MAP Kinase Signaling System Metabolic pathways Mice Mice, Inbred C57BL Mice, Knockout Microbiology Osteoprogenitor cells Phagocytosis Progenitor cells RhoA protein Stem cell transplantation Stem cells Transglutaminase 2 Transglutaminases - physiology |
title | Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transglutaminase%20Type%202%20is%20Involved%20in%20the%20Hematopoietic%20Stem%20Cells%20Homeostasis&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Oliverio,%20S.&rft.date=2020-10-01&rft.volume=85&rft.issue=10&rft.spage=1159&rft.epage=1168&rft.pages=1159-1168&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920100041&rft_dat=%3Cgale_proqu%3EA639701115%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471883009&rft_id=info:pmid/33202201&rft_galeid=A639701115&rfr_iscdi=true |