Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis

Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2020-10, Vol.85 (10), p.1159-1168
Hauptverfasser: Oliverio, S., Beltran, J. S. O., Occhigrossi, L., Bordoni, V., Agrati, C., D’Eletto, M., Rossin, F., Borelli, P., Amarante-Mendes, G. P., Demidov, O., Barlev, N. A., Piacentini, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 10
container_start_page 1159
container_title Biochemistry (Moscow)
container_volume 85
creator Oliverio, S.
Beltran, J. S. O.
Occhigrossi, L.
Bordoni, V.
Agrati, C.
D’Eletto, M.
Rossin, F.
Borelli, P.
Amarante-Mendes, G. P.
Demidov, O.
Barlev, N. A.
Piacentini, M.
description Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.
doi_str_mv 10.1134/S0006297920100041
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461859477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639701115</galeid><sourcerecordid>A639701115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSZmxvXF8rFbAVqrUQ5dz5GQni6vEXmynUv89jrYU8SUf7PE87-sZD2NvES4Qpfp4CwC1MNoIwHJU-IytsIamkqDgOVst6WrJn7FXKd2VUICRL9mZlAJEEa3YzS5anw7jnO3kvE3Edw9H4oK7xK_8fRjvac-d5_kb8S1NNodjcJRdz28zTXxD45j4NkwUUrbJpdfsxWDHRG8e93P29fOn3WZbXd98udpcXle9NJgrDYPujdKdUcIaqWpBXQNoO7GGusNByUYNGgihxoHM2jRWEXWlrxobo7U8Zx9OvscYvs-Ucju51JdqrKcwp1Ys4Lq8sKDv_0Dvwhx9qa5QGptGQvmVJ-pgR2qdH0KOtl9M28taGg2IuC7UxT-osvY0uT54Gly5_02AJ0EfQ0qRhvYY3WTjQ4vQLkNs_xpi0bx7LHjuJto_KX5OrQDiBKSS8geKvzr6v-sPYYKhaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471883009</pqid></control><display><type>article</type><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</creator><creatorcontrib>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</creatorcontrib><description>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920100041</identifier><identifier>PMID: 33202201</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Animals ; Autophagy ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Bone marrow ; Cell death ; Cell Differentiation ; Cells, Cultured ; Deprivation ; Differentiation ; Female ; GTP-Binding Proteins - physiology ; Hematopoiesis ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Hematopoietic system ; Homeostasis ; In vivo methods and tests ; Life Sciences ; MAP Kinase Signaling System ; Metabolic pathways ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microbiology ; Osteoprogenitor cells ; Phagocytosis ; Progenitor cells ; RhoA protein ; Stem cell transplantation ; Stem cells ; Transglutaminase 2 ; Transglutaminases - physiology</subject><ispartof>Biochemistry (Moscow), 2020-10, Vol.85 (10), p.1159-1168</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920100041$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920100041$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33202201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliverio, S.</creatorcontrib><creatorcontrib>Beltran, J. S. O.</creatorcontrib><creatorcontrib>Occhigrossi, L.</creatorcontrib><creatorcontrib>Bordoni, V.</creatorcontrib><creatorcontrib>Agrati, C.</creatorcontrib><creatorcontrib>D’Eletto, M.</creatorcontrib><creatorcontrib>Rossin, F.</creatorcontrib><creatorcontrib>Borelli, P.</creatorcontrib><creatorcontrib>Amarante-Mendes, G. P.</creatorcontrib><creatorcontrib>Demidov, O.</creatorcontrib><creatorcontrib>Barlev, N. A.</creatorcontrib><creatorcontrib>Piacentini, M.</creatorcontrib><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Bone marrow</subject><subject>Cell death</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Deprivation</subject><subject>Differentiation</subject><subject>Female</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic system</subject><subject>Homeostasis</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>MAP Kinase Signaling System</subject><subject>Metabolic pathways</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microbiology</subject><subject>Osteoprogenitor cells</subject><subject>Phagocytosis</subject><subject>Progenitor cells</subject><subject>RhoA protein</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transglutaminase 2</subject><subject>Transglutaminases - physiology</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSZmxvXF8rFbAVqrUQ5dz5GQni6vEXmynUv89jrYU8SUf7PE87-sZD2NvES4Qpfp4CwC1MNoIwHJU-IytsIamkqDgOVst6WrJn7FXKd2VUICRL9mZlAJEEa3YzS5anw7jnO3kvE3Edw9H4oK7xK_8fRjvac-d5_kb8S1NNodjcJRdz28zTXxD45j4NkwUUrbJpdfsxWDHRG8e93P29fOn3WZbXd98udpcXle9NJgrDYPujdKdUcIaqWpBXQNoO7GGusNByUYNGgihxoHM2jRWEXWlrxobo7U8Zx9OvscYvs-Ucju51JdqrKcwp1Ys4Lq8sKDv_0Dvwhx9qa5QGptGQvmVJ-pgR2qdH0KOtl9M28taGg2IuC7UxT-osvY0uT54Gly5_02AJ0EfQ0qRhvYY3WTjQ4vQLkNs_xpi0bx7LHjuJto_KX5OrQDiBKSS8geKvzr6v-sPYYKhaQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Oliverio, S.</creator><creator>Beltran, J. S. O.</creator><creator>Occhigrossi, L.</creator><creator>Bordoni, V.</creator><creator>Agrati, C.</creator><creator>D’Eletto, M.</creator><creator>Rossin, F.</creator><creator>Borelli, P.</creator><creator>Amarante-Mendes, G. P.</creator><creator>Demidov, O.</creator><creator>Barlev, N. A.</creator><creator>Piacentini, M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</title><author>Oliverio, S. ; Beltran, J. S. O. ; Occhigrossi, L. ; Bordoni, V. ; Agrati, C. ; D’Eletto, M. ; Rossin, F. ; Borelli, P. ; Amarante-Mendes, G. P. ; Demidov, O. ; Barlev, N. A. ; Piacentini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-70f7c947b942a93462eb801ab2506b1f4384f70e1061fe9598a4eeb3046189773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Bone marrow</topic><topic>Cell death</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Deprivation</topic><topic>Differentiation</topic><topic>Female</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic system</topic><topic>Homeostasis</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>MAP Kinase Signaling System</topic><topic>Metabolic pathways</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microbiology</topic><topic>Osteoprogenitor cells</topic><topic>Phagocytosis</topic><topic>Progenitor cells</topic><topic>RhoA protein</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transglutaminase 2</topic><topic>Transglutaminases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliverio, S.</creatorcontrib><creatorcontrib>Beltran, J. S. O.</creatorcontrib><creatorcontrib>Occhigrossi, L.</creatorcontrib><creatorcontrib>Bordoni, V.</creatorcontrib><creatorcontrib>Agrati, C.</creatorcontrib><creatorcontrib>D’Eletto, M.</creatorcontrib><creatorcontrib>Rossin, F.</creatorcontrib><creatorcontrib>Borelli, P.</creatorcontrib><creatorcontrib>Amarante-Mendes, G. P.</creatorcontrib><creatorcontrib>Demidov, O.</creatorcontrib><creatorcontrib>Barlev, N. A.</creatorcontrib><creatorcontrib>Piacentini, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliverio, S.</au><au>Beltran, J. S. O.</au><au>Occhigrossi, L.</au><au>Bordoni, V.</au><au>Agrati, C.</au><au>D’Eletto, M.</au><au>Rossin, F.</au><au>Borelli, P.</au><au>Amarante-Mendes, G. P.</au><au>Demidov, O.</au><au>Barlev, N. A.</au><au>Piacentini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>85</volume><issue>10</issue><spage>1159</spage><epage>1168</epage><pages>1159-1168</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>33202201</pmid><doi>10.1134/S0006297920100041</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2020-10, Vol.85 (10), p.1159-1168
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_2461859477
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Autophagy
Biochemistry
Biological activity
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Bone marrow
Cell death
Cell Differentiation
Cells, Cultured
Deprivation
Differentiation
Female
GTP-Binding Proteins - physiology
Hematopoiesis
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Hematopoietic system
Homeostasis
In vivo methods and tests
Life Sciences
MAP Kinase Signaling System
Metabolic pathways
Mice
Mice, Inbred C57BL
Mice, Knockout
Microbiology
Osteoprogenitor cells
Phagocytosis
Progenitor cells
RhoA protein
Stem cell transplantation
Stem cells
Transglutaminase 2
Transglutaminases - physiology
title Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transglutaminase%20Type%202%20is%20Involved%20in%20the%20Hematopoietic%20Stem%20Cells%20Homeostasis&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Oliverio,%20S.&rft.date=2020-10-01&rft.volume=85&rft.issue=10&rft.spage=1159&rft.epage=1168&rft.pages=1159-1168&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920100041&rft_dat=%3Cgale_proqu%3EA639701115%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471883009&rft_id=info:pmid/33202201&rft_galeid=A639701115&rfr_iscdi=true