Driving Forces of Protein Diffusion

Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes–Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-12, Vol.11 (23), p.10137-10143
Hauptverfasser: Sarhangi, Setare Mostajabi, Matyushov, Dmitry V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10143
container_issue 23
container_start_page 10137
container_title The journal of physical chemistry letters
container_volume 11
creator Sarhangi, Setare Mostajabi
Matyushov, Dmitry V
description Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes–Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different charges are analyzed here in terms of the van der Waals (vdW) and electrostatic forces acting on the protein. They turn out to be remarkably strongly correlated and the total force is largely a compensation between vdW and electrostatic forces. Both vdW and electrostatic forces relax on the same time scale of 5–6 ns separated by 6 orders of magnitude from the relaxation time of the total force. Similar phenomenology applies to the dynamics and statistics of the fluctuating torque responsible for rotational diffusion. Standard linear theories of dielectric friction are grossly inapplicable to translational and rotational diffusion of proteins overestimating friction by many orders of magnitude.
doi_str_mv 10.1021/acs.jpclett.0c03006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461003540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461003540</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-80652b9ad47c4212dc79140f48c64d12824df8c8aebb873a30d6e453060c28343</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1gisbAkPX_EcUbUUkCq1A4wW45jI1dpHOwEiX9PIBmYmO6V7nlPugehWwwZBoJXSsfs2OnG9H0GGigAP0MLXDKRFljk53_yJbqK8TgCJYhige42wX269j3Z-qBNTLxNDsH3xrXJxlk7ROfba3RhVRPNzTyX6G37-Lp-Tnf7p5f1wy5VlJA-FcBzUpWqZoVmBJNaFyVmYJnQnNWYCMJqK7RQpqpEQRWFmhuWU-CgiaCMLtH9dLcL_mMwsZcnF7VpGtUaP0RJGMcANGcwonRCdfAxBmNlF9xJhS-JQf4okaMSOSuRs5KxtZpav0s_hHZ859_GN4V-ZWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461003540</pqid></control><display><type>article</type><title>Driving Forces of Protein Diffusion</title><source>ACS Publications</source><creator>Sarhangi, Setare Mostajabi ; Matyushov, Dmitry V</creator><creatorcontrib>Sarhangi, Setare Mostajabi ; Matyushov, Dmitry V</creatorcontrib><description>Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes–Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different charges are analyzed here in terms of the van der Waals (vdW) and electrostatic forces acting on the protein. They turn out to be remarkably strongly correlated and the total force is largely a compensation between vdW and electrostatic forces. Both vdW and electrostatic forces relax on the same time scale of 5–6 ns separated by 6 orders of magnitude from the relaxation time of the total force. Similar phenomenology applies to the dynamics and statistics of the fluctuating torque responsible for rotational diffusion. Standard linear theories of dielectric friction are grossly inapplicable to translational and rotational diffusion of proteins overestimating friction by many orders of magnitude.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c03006</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into the Biosphere, Atmosphere, and Space</subject><ispartof>The journal of physical chemistry letters, 2020-12, Vol.11 (23), p.10137-10143</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-80652b9ad47c4212dc79140f48c64d12824df8c8aebb873a30d6e453060c28343</citedby><cites>FETCH-LOGICAL-a322t-80652b9ad47c4212dc79140f48c64d12824df8c8aebb873a30d6e453060c28343</cites><orcidid>0000-0002-9352-764X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c03006$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03006$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sarhangi, Setare Mostajabi</creatorcontrib><creatorcontrib>Matyushov, Dmitry V</creatorcontrib><title>Driving Forces of Protein Diffusion</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes–Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different charges are analyzed here in terms of the van der Waals (vdW) and electrostatic forces acting on the protein. They turn out to be remarkably strongly correlated and the total force is largely a compensation between vdW and electrostatic forces. Both vdW and electrostatic forces relax on the same time scale of 5–6 ns separated by 6 orders of magnitude from the relaxation time of the total force. Similar phenomenology applies to the dynamics and statistics of the fluctuating torque responsible for rotational diffusion. Standard linear theories of dielectric friction are grossly inapplicable to translational and rotational diffusion of proteins overestimating friction by many orders of magnitude.</description><subject>Physical Insights into the Biosphere, Atmosphere, and Space</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1gisbAkPX_EcUbUUkCq1A4wW45jI1dpHOwEiX9PIBmYmO6V7nlPugehWwwZBoJXSsfs2OnG9H0GGigAP0MLXDKRFljk53_yJbqK8TgCJYhige42wX269j3Z-qBNTLxNDsH3xrXJxlk7ROfba3RhVRPNzTyX6G37-Lp-Tnf7p5f1wy5VlJA-FcBzUpWqZoVmBJNaFyVmYJnQnNWYCMJqK7RQpqpEQRWFmhuWU-CgiaCMLtH9dLcL_mMwsZcnF7VpGtUaP0RJGMcANGcwonRCdfAxBmNlF9xJhS-JQf4okaMSOSuRs5KxtZpav0s_hHZ859_GN4V-ZWI</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Sarhangi, Setare Mostajabi</creator><creator>Matyushov, Dmitry V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9352-764X</orcidid></search><sort><creationdate>20201203</creationdate><title>Driving Forces of Protein Diffusion</title><author>Sarhangi, Setare Mostajabi ; Matyushov, Dmitry V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-80652b9ad47c4212dc79140f48c64d12824df8c8aebb873a30d6e453060c28343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Physical Insights into the Biosphere, Atmosphere, and Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarhangi, Setare Mostajabi</creatorcontrib><creatorcontrib>Matyushov, Dmitry V</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarhangi, Setare Mostajabi</au><au>Matyushov, Dmitry V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving Forces of Protein Diffusion</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>11</volume><issue>23</issue><spage>10137</spage><epage>10143</epage><pages>10137-10143</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes–Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different charges are analyzed here in terms of the van der Waals (vdW) and electrostatic forces acting on the protein. They turn out to be remarkably strongly correlated and the total force is largely a compensation between vdW and electrostatic forces. Both vdW and electrostatic forces relax on the same time scale of 5–6 ns separated by 6 orders of magnitude from the relaxation time of the total force. Similar phenomenology applies to the dynamics and statistics of the fluctuating torque responsible for rotational diffusion. Standard linear theories of dielectric friction are grossly inapplicable to translational and rotational diffusion of proteins overestimating friction by many orders of magnitude.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.0c03006</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9352-764X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-12, Vol.11 (23), p.10137-10143
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2461003540
source ACS Publications
subjects Physical Insights into the Biosphere, Atmosphere, and Space
title Driving Forces of Protein Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20Forces%20of%20Protein%20Diffusion&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Sarhangi,%20Setare%20Mostajabi&rft.date=2020-12-03&rft.volume=11&rft.issue=23&rft.spage=10137&rft.epage=10143&rft.pages=10137-10143&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c03006&rft_dat=%3Cproquest_cross%3E2461003540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461003540&rft_id=info:pmid/&rfr_iscdi=true