DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo
Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. W...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2021-01, Vol.10 (2), p.e2001739-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2001739 |
container_title | Advanced healthcare materials |
container_volume | 10 |
creator | Joseph, James Baumann, Kevin N. Postigo, Alejandro Bollepalli, Laura Bohndiek, Sarah E. Hernández‐Ainsa, Silvia |
description | Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics. |
doi_str_mv | 10.1002/adhm.202001739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461002818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478940904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhhujEYNcPZomXrwstt1uaY8IKCQIF_S66bbdsITdYrur4eYj-Iw-iSUgJl6cy8zhmy8zPwBXGHUxQuRO6mXZJYgghHuxOAEXBAsSEZaI0-NMUQt0vF-hUCzBjONz0IpjLDBj-ALMh7P-18fnvfRGw5msrJLOFcZ5WFs4qpayUgbWSwPnm9pKZRtfFwoObFU76Wtoc7hoShvwSQVfijd7Cc5yufamc-ht8PwwWgzG0XT-OBn0p5GiOBZR0jNMaU4Ry3lPaC1JnieYUJpoxCk1WYZNTvNYihgzysOPGTKC6UxxKnUs4za43Xs3zr42xtdpWXhl1mtZmXBkSijbRcQxD-jNH3RlG1eF6wLV44IigWiguntKOeu9M3m6cUUp3TbFKN2p0l3a6THtsHB90DZZafQR_8k2AGIPvBdrs_1Hl_aH46df-Tc4Iops</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478940904</pqid></control><display><type>article</type><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</creator><creatorcontrib>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</creatorcontrib><description>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202001739</identifier><identifier>PMID: 33191661</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatibility ; Biodegradability ; Blood circulation ; cancer imaging ; Chemical compounds ; Contrast agents ; Contrast media ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; Dyes ; Fluorescence ; Fluorescent Dyes ; Fluorophores ; Intravenous administration ; Kidneys ; Medical imaging ; Mice ; Molecular Imaging ; Neoplasms - diagnostic imaging ; optical imaging ; optoacoustics ; Permeability ; Signal generation ; Temporal resolution ; Toxicity ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Advanced healthcare materials, 2021-01, Vol.10 (2), p.e2001739-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</citedby><cites>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</cites><orcidid>0000-0001-6270-2559 ; 0000-0003-0371-8635 ; 0000-0001-5613-6394 ; 0000-0003-3109-4284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202001739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202001739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33191661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Baumann, Kevin N.</creatorcontrib><creatorcontrib>Postigo, Alejandro</creatorcontrib><creatorcontrib>Bollepalli, Laura</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Hernández‐Ainsa, Silvia</creatorcontrib><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Blood circulation</subject><subject>cancer imaging</subject><subject>Chemical compounds</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorophores</subject><subject>Intravenous administration</subject><subject>Kidneys</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>Neoplasms - diagnostic imaging</subject><subject>optical imaging</subject><subject>optoacoustics</subject><subject>Permeability</subject><subject>Signal generation</subject><subject>Temporal resolution</subject><subject>Toxicity</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFOAjEQhhujEYNcPZomXrwstt1uaY8IKCQIF_S66bbdsITdYrur4eYj-Iw-iSUgJl6cy8zhmy8zPwBXGHUxQuRO6mXZJYgghHuxOAEXBAsSEZaI0-NMUQt0vF-hUCzBjONz0IpjLDBj-ALMh7P-18fnvfRGw5msrJLOFcZ5WFs4qpayUgbWSwPnm9pKZRtfFwoObFU76Wtoc7hoShvwSQVfijd7Cc5yufamc-ht8PwwWgzG0XT-OBn0p5GiOBZR0jNMaU4Ry3lPaC1JnieYUJpoxCk1WYZNTvNYihgzysOPGTKC6UxxKnUs4za43Xs3zr42xtdpWXhl1mtZmXBkSijbRcQxD-jNH3RlG1eF6wLV44IigWiguntKOeu9M3m6cUUp3TbFKN2p0l3a6THtsHB90DZZafQR_8k2AGIPvBdrs_1Hl_aH46df-Tc4Iops</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Joseph, James</creator><creator>Baumann, Kevin N.</creator><creator>Postigo, Alejandro</creator><creator>Bollepalli, Laura</creator><creator>Bohndiek, Sarah E.</creator><creator>Hernández‐Ainsa, Silvia</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6270-2559</orcidid><orcidid>https://orcid.org/0000-0003-0371-8635</orcidid><orcidid>https://orcid.org/0000-0001-5613-6394</orcidid><orcidid>https://orcid.org/0000-0003-3109-4284</orcidid></search><sort><creationdate>20210101</creationdate><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><author>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Blood circulation</topic><topic>cancer imaging</topic><topic>Chemical compounds</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorophores</topic><topic>Intravenous administration</topic><topic>Kidneys</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>Neoplasms - diagnostic imaging</topic><topic>optical imaging</topic><topic>optoacoustics</topic><topic>Permeability</topic><topic>Signal generation</topic><topic>Temporal resolution</topic><topic>Toxicity</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Baumann, Kevin N.</creatorcontrib><creatorcontrib>Postigo, Alejandro</creatorcontrib><creatorcontrib>Bollepalli, Laura</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Hernández‐Ainsa, Silvia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, James</au><au>Baumann, Kevin N.</au><au>Postigo, Alejandro</au><au>Bollepalli, Laura</au><au>Bohndiek, Sarah E.</au><au>Hernández‐Ainsa, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><spage>e2001739</spage><epage>n/a</epage><pages>e2001739-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33191661</pmid><doi>10.1002/adhm.202001739</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6270-2559</orcidid><orcidid>https://orcid.org/0000-0003-0371-8635</orcidid><orcidid>https://orcid.org/0000-0001-5613-6394</orcidid><orcidid>https://orcid.org/0000-0003-3109-4284</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2021-01, Vol.10 (2), p.e2001739-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2461002818 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biocompatibility Biodegradability Blood circulation cancer imaging Chemical compounds Contrast agents Contrast media Deoxyribonucleic acid DNA DNA nanotechnology Dyes Fluorescence Fluorescent Dyes Fluorophores Intravenous administration Kidneys Medical imaging Mice Molecular Imaging Neoplasms - diagnostic imaging optical imaging optoacoustics Permeability Signal generation Temporal resolution Toxicity Tumors Xenografts Xenotransplantation |
title | DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%E2%80%90Based%20Nanocarriers%20to%20Enhance%20the%20Optoacoustic%20Contrast%20of%20Tumors%20In%20Vivo&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Joseph,%20James&rft.date=2021-01-01&rft.volume=10&rft.issue=2&rft.spage=e2001739&rft.epage=n/a&rft.pages=e2001739-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202001739&rft_dat=%3Cproquest_cross%3E2478940904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478940904&rft_id=info:pmid/33191661&rfr_iscdi=true |