DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo

Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2021-01, Vol.10 (2), p.e2001739-n/a
Hauptverfasser: Joseph, James, Baumann, Kevin N., Postigo, Alejandro, Bollepalli, Laura, Bohndiek, Sarah E., Hernández‐Ainsa, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2001739
container_title Advanced healthcare materials
container_volume 10
creator Joseph, James
Baumann, Kevin N.
Postigo, Alejandro
Bollepalli, Laura
Bohndiek, Sarah E.
Hernández‐Ainsa, Silvia
description Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes. Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.
doi_str_mv 10.1002/adhm.202001739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461002818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478940904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhhujEYNcPZomXrwstt1uaY8IKCQIF_S66bbdsITdYrur4eYj-Iw-iSUgJl6cy8zhmy8zPwBXGHUxQuRO6mXZJYgghHuxOAEXBAsSEZaI0-NMUQt0vF-hUCzBjONz0IpjLDBj-ALMh7P-18fnvfRGw5msrJLOFcZ5WFs4qpayUgbWSwPnm9pKZRtfFwoObFU76Wtoc7hoShvwSQVfijd7Cc5yufamc-ht8PwwWgzG0XT-OBn0p5GiOBZR0jNMaU4Ry3lPaC1JnieYUJpoxCk1WYZNTvNYihgzysOPGTKC6UxxKnUs4za43Xs3zr42xtdpWXhl1mtZmXBkSijbRcQxD-jNH3RlG1eF6wLV44IigWiguntKOeu9M3m6cUUp3TbFKN2p0l3a6THtsHB90DZZafQR_8k2AGIPvBdrs_1Hl_aH46df-Tc4Iops</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478940904</pqid></control><display><type>article</type><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</creator><creatorcontrib>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</creatorcontrib><description>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes. Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202001739</identifier><identifier>PMID: 33191661</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatibility ; Biodegradability ; Blood circulation ; cancer imaging ; Chemical compounds ; Contrast agents ; Contrast media ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; Dyes ; Fluorescence ; Fluorescent Dyes ; Fluorophores ; Intravenous administration ; Kidneys ; Medical imaging ; Mice ; Molecular Imaging ; Neoplasms - diagnostic imaging ; optical imaging ; optoacoustics ; Permeability ; Signal generation ; Temporal resolution ; Toxicity ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Advanced healthcare materials, 2021-01, Vol.10 (2), p.e2001739-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</citedby><cites>FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</cites><orcidid>0000-0001-6270-2559 ; 0000-0003-0371-8635 ; 0000-0001-5613-6394 ; 0000-0003-3109-4284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202001739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202001739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33191661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Baumann, Kevin N.</creatorcontrib><creatorcontrib>Postigo, Alejandro</creatorcontrib><creatorcontrib>Bollepalli, Laura</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Hernández‐Ainsa, Silvia</creatorcontrib><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes. Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Blood circulation</subject><subject>cancer imaging</subject><subject>Chemical compounds</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorophores</subject><subject>Intravenous administration</subject><subject>Kidneys</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>Neoplasms - diagnostic imaging</subject><subject>optical imaging</subject><subject>optoacoustics</subject><subject>Permeability</subject><subject>Signal generation</subject><subject>Temporal resolution</subject><subject>Toxicity</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFOAjEQhhujEYNcPZomXrwstt1uaY8IKCQIF_S66bbdsITdYrur4eYj-Iw-iSUgJl6cy8zhmy8zPwBXGHUxQuRO6mXZJYgghHuxOAEXBAsSEZaI0-NMUQt0vF-hUCzBjONz0IpjLDBj-ALMh7P-18fnvfRGw5msrJLOFcZ5WFs4qpayUgbWSwPnm9pKZRtfFwoObFU76Wtoc7hoShvwSQVfijd7Cc5yufamc-ht8PwwWgzG0XT-OBn0p5GiOBZR0jNMaU4Ry3lPaC1JnieYUJpoxCk1WYZNTvNYihgzysOPGTKC6UxxKnUs4za43Xs3zr42xtdpWXhl1mtZmXBkSijbRcQxD-jNH3RlG1eF6wLV44IigWiguntKOeu9M3m6cUUp3TbFKN2p0l3a6THtsHB90DZZafQR_8k2AGIPvBdrs_1Hl_aH46df-Tc4Iops</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Joseph, James</creator><creator>Baumann, Kevin N.</creator><creator>Postigo, Alejandro</creator><creator>Bollepalli, Laura</creator><creator>Bohndiek, Sarah E.</creator><creator>Hernández‐Ainsa, Silvia</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6270-2559</orcidid><orcidid>https://orcid.org/0000-0003-0371-8635</orcidid><orcidid>https://orcid.org/0000-0001-5613-6394</orcidid><orcidid>https://orcid.org/0000-0003-3109-4284</orcidid></search><sort><creationdate>20210101</creationdate><title>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</title><author>Joseph, James ; Baumann, Kevin N. ; Postigo, Alejandro ; Bollepalli, Laura ; Bohndiek, Sarah E. ; Hernández‐Ainsa, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-57e6cd8406f879dda2ff512445d0844ebb1ef4f3a931648202b0e96dbc84ad3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Blood circulation</topic><topic>cancer imaging</topic><topic>Chemical compounds</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorophores</topic><topic>Intravenous administration</topic><topic>Kidneys</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>Neoplasms - diagnostic imaging</topic><topic>optical imaging</topic><topic>optoacoustics</topic><topic>Permeability</topic><topic>Signal generation</topic><topic>Temporal resolution</topic><topic>Toxicity</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Baumann, Kevin N.</creatorcontrib><creatorcontrib>Postigo, Alejandro</creatorcontrib><creatorcontrib>Bollepalli, Laura</creatorcontrib><creatorcontrib>Bohndiek, Sarah E.</creatorcontrib><creatorcontrib>Hernández‐Ainsa, Silvia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, James</au><au>Baumann, Kevin N.</au><au>Postigo, Alejandro</au><au>Bollepalli, Laura</au><au>Bohndiek, Sarah E.</au><au>Hernández‐Ainsa, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>10</volume><issue>2</issue><spage>e2001739</spage><epage>n/a</epage><pages>e2001739-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Optoacoustic tomography (OT) enables non‐invasive deep tissue imaging of optical contrast at high spatio‐temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near‐infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA‐based nanocarrier (DNA‐NC) platforms is introduced. DNA‐NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA‐NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA‐NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes. Nanocarriers built through DNA nanotechnology are demonstrated to enhance the photoacoustic contrast of a small near‐infrared dye at the tumor site in vivo. These versatile, scalable, and biocompatible nanoplatforms provide interesting possibilities for in vivo cancer imaging as well as theranostics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33191661</pmid><doi>10.1002/adhm.202001739</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6270-2559</orcidid><orcidid>https://orcid.org/0000-0003-0371-8635</orcidid><orcidid>https://orcid.org/0000-0001-5613-6394</orcidid><orcidid>https://orcid.org/0000-0003-3109-4284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2021-01, Vol.10 (2), p.e2001739-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2461002818
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biocompatibility
Biodegradability
Blood circulation
cancer imaging
Chemical compounds
Contrast agents
Contrast media
Deoxyribonucleic acid
DNA
DNA nanotechnology
Dyes
Fluorescence
Fluorescent Dyes
Fluorophores
Intravenous administration
Kidneys
Medical imaging
Mice
Molecular Imaging
Neoplasms - diagnostic imaging
optical imaging
optoacoustics
Permeability
Signal generation
Temporal resolution
Toxicity
Tumors
Xenografts
Xenotransplantation
title DNA‐Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%E2%80%90Based%20Nanocarriers%20to%20Enhance%20the%20Optoacoustic%20Contrast%20of%20Tumors%20In%20Vivo&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Joseph,%20James&rft.date=2021-01-01&rft.volume=10&rft.issue=2&rft.spage=e2001739&rft.epage=n/a&rft.pages=e2001739-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202001739&rft_dat=%3Cproquest_cross%3E2478940904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478940904&rft_id=info:pmid/33191661&rfr_iscdi=true