Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products

[Display omitted] A new-type nitrogen-rich carbon nitride material C3N5 has been synthesized recently, in which the C:N ratio increases from 3:4 in g-C3N4 to 3:5 due to the introduction of azo linkage (NN) connecting segments in two C6N7 units. Herein, C3N5 as a photocatalyst for CO2 reduction was i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-03, Vol.585, p.740-749
Hauptverfasser: Wang, Yuelin, Ngoc Pham, Thanh, Tian, Yu, Morikawa, Yoshitada, Yan, Likai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 749
container_issue
container_start_page 740
container_title Journal of colloid and interface science
container_volume 585
creator Wang, Yuelin
Ngoc Pham, Thanh
Tian, Yu
Morikawa, Yoshitada
Yan, Likai
description [Display omitted] A new-type nitrogen-rich carbon nitride material C3N5 has been synthesized recently, in which the C:N ratio increases from 3:4 in g-C3N4 to 3:5 due to the introduction of azo linkage (NN) connecting segments in two C6N7 units. Herein, C3N5 as a photocatalyst for CO2 reduction was investigated by density functional theory methods. The electronic and optical properties indicate that C3N5 has a longer visible-light region with 2.0 eV of band gap in comparison with g-C3N4. The spatial distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) show that the π network of C3N5 is extended by introducing —NN— linkage, which results in much higher photocatalytic efficiency than g-C3N4. The Gibbs free energies for possible CO2 reaction paths on C3N5 were computed. The results show that CO2 can be reduced to CH4 with a low limiting potential of −0.54 V and to CH3CH2OH with a low limiting potential of −0.61 V, which all driven by solar energy. The present work is expected to provide useful guide for new-type nitrogen-rich C3N5 as promising photocatalyst for CO2 reduction reaction (CO2RR).
doi_str_mv 10.1016/j.jcis.2020.10.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460771307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720313941</els_id><sourcerecordid>2460771307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-267ad9090fd28a4cad205e1f852dea9bc09bf6828ce18301f4491cabfda9f9763</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK77BzzV0UvPVtKfAS_SuquwuBf3HDJJxcnQk4xJWuh_4M-22_HsqeChnnqpl7F3HPcceXd32p-Mz3uBYgN7bJsXbMdRtlXPsX7JdoiCV7KX_Wv2JucTIudtK3fs9ycK2ZcF3BxM8THoCcqRYlogl9kuEANoCL6k-INClbw5gtHpsOINektw1oWSX72x_taCznA5xhKNLnpacgEXE4xPAhLZ-W8ClAgjBx0sjAIuKW48v2WvnJ4y3f6bN-z5_vP38Uv1-PTwdfz4WJlaylKJrtdWokRnxaAbo63AlrgbWmFJy4NBeXDdIAZDfKiRu6aR3OiDs1o62Xf1DXt_vbsG_5wpF3X22dA06UBxzko0HfY9r7FfV8V11aSYcyKnLsmfdVoUR7XVrk5qq11ttW9srX2VPlwlWp_45SmpbDwFQ9YnMkXZ6P-n_wGC7Y0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460771307</pqid></control><display><type>article</type><title>Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Yuelin ; Ngoc Pham, Thanh ; Tian, Yu ; Morikawa, Yoshitada ; Yan, Likai</creator><creatorcontrib>Wang, Yuelin ; Ngoc Pham, Thanh ; Tian, Yu ; Morikawa, Yoshitada ; Yan, Likai</creatorcontrib><description>[Display omitted] A new-type nitrogen-rich carbon nitride material C3N5 has been synthesized recently, in which the C:N ratio increases from 3:4 in g-C3N4 to 3:5 due to the introduction of azo linkage (NN) connecting segments in two C6N7 units. Herein, C3N5 as a photocatalyst for CO2 reduction was investigated by density functional theory methods. The electronic and optical properties indicate that C3N5 has a longer visible-light region with 2.0 eV of band gap in comparison with g-C3N4. The spatial distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) show that the π network of C3N5 is extended by introducing —NN— linkage, which results in much higher photocatalytic efficiency than g-C3N4. The Gibbs free energies for possible CO2 reaction paths on C3N5 were computed. The results show that CO2 can be reduced to CH4 with a low limiting potential of −0.54 V and to CH3CH2OH with a low limiting potential of −0.61 V, which all driven by solar energy. The present work is expected to provide useful guide for new-type nitrogen-rich C3N5 as promising photocatalyst for CO2 reduction reaction (CO2RR).</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.10.054</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>C3N5 ; Carbon nitride materials ; CO2 reduction reaction ; Density functional theory ; Metal-free materials ; Photocatalyst</subject><ispartof>Journal of colloid and interface science, 2021-03, Vol.585, p.740-749</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-267ad9090fd28a4cad205e1f852dea9bc09bf6828ce18301f4491cabfda9f9763</citedby><cites>FETCH-LOGICAL-c399t-267ad9090fd28a4cad205e1f852dea9bc09bf6828ce18301f4491cabfda9f9763</cites><orcidid>0000-0003-4895-4121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2020.10.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wang, Yuelin</creatorcontrib><creatorcontrib>Ngoc Pham, Thanh</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Morikawa, Yoshitada</creatorcontrib><creatorcontrib>Yan, Likai</creatorcontrib><title>Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products</title><title>Journal of colloid and interface science</title><description>[Display omitted] A new-type nitrogen-rich carbon nitride material C3N5 has been synthesized recently, in which the C:N ratio increases from 3:4 in g-C3N4 to 3:5 due to the introduction of azo linkage (NN) connecting segments in two C6N7 units. Herein, C3N5 as a photocatalyst for CO2 reduction was investigated by density functional theory methods. The electronic and optical properties indicate that C3N5 has a longer visible-light region with 2.0 eV of band gap in comparison with g-C3N4. The spatial distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) show that the π network of C3N5 is extended by introducing —NN— linkage, which results in much higher photocatalytic efficiency than g-C3N4. The Gibbs free energies for possible CO2 reaction paths on C3N5 were computed. The results show that CO2 can be reduced to CH4 with a low limiting potential of −0.54 V and to CH3CH2OH with a low limiting potential of −0.61 V, which all driven by solar energy. The present work is expected to provide useful guide for new-type nitrogen-rich C3N5 as promising photocatalyst for CO2 reduction reaction (CO2RR).</description><subject>C3N5</subject><subject>Carbon nitride materials</subject><subject>CO2 reduction reaction</subject><subject>Density functional theory</subject><subject>Metal-free materials</subject><subject>Photocatalyst</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK77BzzV0UvPVtKfAS_SuquwuBf3HDJJxcnQk4xJWuh_4M-22_HsqeChnnqpl7F3HPcceXd32p-Mz3uBYgN7bJsXbMdRtlXPsX7JdoiCV7KX_Wv2JucTIudtK3fs9ycK2ZcF3BxM8THoCcqRYlogl9kuEANoCL6k-INClbw5gtHpsOINektw1oWSX72x_taCznA5xhKNLnpacgEXE4xPAhLZ-W8ClAgjBx0sjAIuKW48v2WvnJ4y3f6bN-z5_vP38Uv1-PTwdfz4WJlaylKJrtdWokRnxaAbo63AlrgbWmFJy4NBeXDdIAZDfKiRu6aR3OiDs1o62Xf1DXt_vbsG_5wpF3X22dA06UBxzko0HfY9r7FfV8V11aSYcyKnLsmfdVoUR7XVrk5qq11ttW9srX2VPlwlWp_45SmpbDwFQ9YnMkXZ6P-n_wGC7Y0n</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Yuelin</creator><creator>Ngoc Pham, Thanh</creator><creator>Tian, Yu</creator><creator>Morikawa, Yoshitada</creator><creator>Yan, Likai</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4895-4121</orcidid></search><sort><creationdate>202103</creationdate><title>Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products</title><author>Wang, Yuelin ; Ngoc Pham, Thanh ; Tian, Yu ; Morikawa, Yoshitada ; Yan, Likai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-267ad9090fd28a4cad205e1f852dea9bc09bf6828ce18301f4491cabfda9f9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C3N5</topic><topic>Carbon nitride materials</topic><topic>CO2 reduction reaction</topic><topic>Density functional theory</topic><topic>Metal-free materials</topic><topic>Photocatalyst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuelin</creatorcontrib><creatorcontrib>Ngoc Pham, Thanh</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Morikawa, Yoshitada</creatorcontrib><creatorcontrib>Yan, Likai</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuelin</au><au>Ngoc Pham, Thanh</au><au>Tian, Yu</au><au>Morikawa, Yoshitada</au><au>Yan, Likai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2021-03</date><risdate>2021</risdate><volume>585</volume><spage>740</spage><epage>749</epage><pages>740-749</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] A new-type nitrogen-rich carbon nitride material C3N5 has been synthesized recently, in which the C:N ratio increases from 3:4 in g-C3N4 to 3:5 due to the introduction of azo linkage (NN) connecting segments in two C6N7 units. Herein, C3N5 as a photocatalyst for CO2 reduction was investigated by density functional theory methods. The electronic and optical properties indicate that C3N5 has a longer visible-light region with 2.0 eV of band gap in comparison with g-C3N4. The spatial distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) show that the π network of C3N5 is extended by introducing —NN— linkage, which results in much higher photocatalytic efficiency than g-C3N4. The Gibbs free energies for possible CO2 reaction paths on C3N5 were computed. The results show that CO2 can be reduced to CH4 with a low limiting potential of −0.54 V and to CH3CH2OH with a low limiting potential of −0.61 V, which all driven by solar energy. The present work is expected to provide useful guide for new-type nitrogen-rich C3N5 as promising photocatalyst for CO2 reduction reaction (CO2RR).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.10.054</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4895-4121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2021-03, Vol.585, p.740-749
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2460771307
source ScienceDirect Journals (5 years ago - present)
subjects C3N5
Carbon nitride materials
CO2 reduction reaction
Density functional theory
Metal-free materials
Photocatalyst
title Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20functional%20theory%20study%20on%20a%20nitrogen-rich%20carbon%20nitride%20material%20C3N5%20as%20photocatalyst%20for%20CO2%20reduction%20to%20C1%20and%20C2%20products&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Yuelin&rft.date=2021-03&rft.volume=585&rft.spage=740&rft.epage=749&rft.pages=740-749&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.10.054&rft_dat=%3Cproquest_cross%3E2460771307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460771307&rft_id=info:pmid/&rft_els_id=S0021979720313941&rfr_iscdi=true