Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas

Agriculture accounts for about 70% of the fresh water use in the world, dominating rainfed production systems. As meeting future food demand will require an increase in crop production, new techniques are necessary to monitor the spatial variability of agricultural water use. However, the use of rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-04, Vol.763, p.142963-142963, Article 142963
Hauptverfasser: Olivera Rodriguez, P., Holzman, M.E., Degano, M.F., Faramiñán, A.M.G., Rivas, R.E., Bayala, M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142963
container_issue
container_start_page 142963
container_title The Science of the total environment
container_volume 763
creator Olivera Rodriguez, P.
Holzman, M.E.
Degano, M.F.
Faramiñán, A.M.G.
Rivas, R.E.
Bayala, M.I.
description Agriculture accounts for about 70% of the fresh water use in the world, dominating rainfed production systems. As meeting future food demand will require an increase in crop production, new techniques are necessary to monitor the spatial variability of agricultural water use. However, the use of remote sensing for the water footprint estimation is limited. This study aims at evaluating the spatial variability of the soil-water consumption in soybean crops, also termed as green water footprint (WFgreen), in a sector of the Argentine Pampas using satellite data. WFgreen was evaluated at spatial resolution of 250 m, estimating the soil water availability through the evaporative fraction and crop yield from Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) data. In the analysed soybean plots, the WFgreen varied from 900 m3 t−1 to 1800 m3 t−1. The preliminary comparison of the method with field measurements showed a RMSE = 494 m3 t−1 and Bias = −410 m3 t−1, respectively. The high spatial variability reflected the heterogeneity of soil-water use efficiency. The proposed technique can be useful to obtain WFgreen maps at medium spatial resolutions (250 m–1000 m). Also, it can be applied in regions with poor ground data coverage to estimate the WFgreen, after a parameterization of the model. The contribution to our understanding of the relationship between soil-water availability, rainfed-crop productivity and then WFgreen is expected. [Display omitted] •The estimation of the Green Water Footprint can be optimized using satellite data•Spatial variability was obtained using evaporative fraction and yield data•The technique allows the calculation of Green Water Footprint at regional scale•It can be a contribution to previous methods for agricultural water use estimation
doi_str_mv 10.1016/j.scitotenv.2020.142963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460771244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969720364937</els_id><sourcerecordid>2460771244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4ed9fc63506432cba7321309c5fe123af1d1559741bf894fc552ff31059080cf3</originalsourceid><addsrcrecordid>eNqFUcuOEzEQtBCIDQu_AD5ymeDXjMfcohUvaSWQdjlbHk8762jGDrYnKB_Ef-Iky17xpSWrqrq6CqF3lKwpod2H3TpbX2KBcFgzwuqvYKrjz9CK9lI1lLDuOVoRIvpGdUpeoVc570h9sqcv0RXntOc97Vboz93eFG8mfDDJm8FPvhxxdLg8AN4mgIB_mwIJuxjLPvlQ8JJ92GKDZxj9MjcJcpyW4mPACebqCGcIZ0gB-xD8rwU-4vuqZk2Gk3KOxwFMwPsUx8WeiT6c993FpQ6TC96kLYTiA-AfZt6b_Bq9cGbK8OZxXqOfnz_d33xtbr9_-XazuW0sl7Q0AkblbMdb0gnO7GAkZ5QTZVsHlHHj6EjbVklBB9cr4WzbMuc4Ja0iPbGOX6P3F91qrhrPRc8-W5gmEyAuWTPRESkpE6JC5QVqU8w5gdM1ntmko6ZEnzrSO_3UkT51pC8dVebbxyXLUEN84v0rpQI2FwDUUw8e0kkIgq2BJ7BFj9H_d8lfwZyq8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460771244</pqid></control><display><type>article</type><title>Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas</title><source>Elsevier ScienceDirect Journals</source><creator>Olivera Rodriguez, P. ; Holzman, M.E. ; Degano, M.F. ; Faramiñán, A.M.G. ; Rivas, R.E. ; Bayala, M.I.</creator><creatorcontrib>Olivera Rodriguez, P. ; Holzman, M.E. ; Degano, M.F. ; Faramiñán, A.M.G. ; Rivas, R.E. ; Bayala, M.I.</creatorcontrib><description>Agriculture accounts for about 70% of the fresh water use in the world, dominating rainfed production systems. As meeting future food demand will require an increase in crop production, new techniques are necessary to monitor the spatial variability of agricultural water use. However, the use of remote sensing for the water footprint estimation is limited. This study aims at evaluating the spatial variability of the soil-water consumption in soybean crops, also termed as green water footprint (WFgreen), in a sector of the Argentine Pampas using satellite data. WFgreen was evaluated at spatial resolution of 250 m, estimating the soil water availability through the evaporative fraction and crop yield from Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) data. In the analysed soybean plots, the WFgreen varied from 900 m3 t−1 to 1800 m3 t−1. The preliminary comparison of the method with field measurements showed a RMSE = 494 m3 t−1 and Bias = −410 m3 t−1, respectively. The high spatial variability reflected the heterogeneity of soil-water use efficiency. The proposed technique can be useful to obtain WFgreen maps at medium spatial resolutions (250 m–1000 m). Also, it can be applied in regions with poor ground data coverage to estimate the WFgreen, after a parameterization of the model. The contribution to our understanding of the relationship between soil-water availability, rainfed-crop productivity and then WFgreen is expected. [Display omitted] •The estimation of the Green Water Footprint can be optimized using satellite data•Spatial variability was obtained using evaporative fraction and yield data•The technique allows the calculation of Green Water Footprint at regional scale•It can be a contribution to previous methods for agricultural water use estimation</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2020.142963</identifier><identifier>PMID: 33183816</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Crop yield ; Efficient agriculture ; Evaporative fraction ; Water footprint</subject><ispartof>The Science of the total environment, 2021-04, Vol.763, p.142963-142963, Article 142963</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4ed9fc63506432cba7321309c5fe123af1d1559741bf894fc552ff31059080cf3</citedby><cites>FETCH-LOGICAL-c371t-4ed9fc63506432cba7321309c5fe123af1d1559741bf894fc552ff31059080cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969720364937$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33183816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olivera Rodriguez, P.</creatorcontrib><creatorcontrib>Holzman, M.E.</creatorcontrib><creatorcontrib>Degano, M.F.</creatorcontrib><creatorcontrib>Faramiñán, A.M.G.</creatorcontrib><creatorcontrib>Rivas, R.E.</creatorcontrib><creatorcontrib>Bayala, M.I.</creatorcontrib><title>Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Agriculture accounts for about 70% of the fresh water use in the world, dominating rainfed production systems. As meeting future food demand will require an increase in crop production, new techniques are necessary to monitor the spatial variability of agricultural water use. However, the use of remote sensing for the water footprint estimation is limited. This study aims at evaluating the spatial variability of the soil-water consumption in soybean crops, also termed as green water footprint (WFgreen), in a sector of the Argentine Pampas using satellite data. WFgreen was evaluated at spatial resolution of 250 m, estimating the soil water availability through the evaporative fraction and crop yield from Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) data. In the analysed soybean plots, the WFgreen varied from 900 m3 t−1 to 1800 m3 t−1. The preliminary comparison of the method with field measurements showed a RMSE = 494 m3 t−1 and Bias = −410 m3 t−1, respectively. The high spatial variability reflected the heterogeneity of soil-water use efficiency. The proposed technique can be useful to obtain WFgreen maps at medium spatial resolutions (250 m–1000 m). Also, it can be applied in regions with poor ground data coverage to estimate the WFgreen, after a parameterization of the model. The contribution to our understanding of the relationship between soil-water availability, rainfed-crop productivity and then WFgreen is expected. [Display omitted] •The estimation of the Green Water Footprint can be optimized using satellite data•Spatial variability was obtained using evaporative fraction and yield data•The technique allows the calculation of Green Water Footprint at regional scale•It can be a contribution to previous methods for agricultural water use estimation</description><subject>Crop yield</subject><subject>Efficient agriculture</subject><subject>Evaporative fraction</subject><subject>Water footprint</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUcuOEzEQtBCIDQu_AD5ymeDXjMfcohUvaSWQdjlbHk8762jGDrYnKB_Ef-Iky17xpSWrqrq6CqF3lKwpod2H3TpbX2KBcFgzwuqvYKrjz9CK9lI1lLDuOVoRIvpGdUpeoVc570h9sqcv0RXntOc97Vboz93eFG8mfDDJm8FPvhxxdLg8AN4mgIB_mwIJuxjLPvlQ8JJ92GKDZxj9MjcJcpyW4mPACebqCGcIZ0gB-xD8rwU-4vuqZk2Gk3KOxwFMwPsUx8WeiT6c993FpQ6TC96kLYTiA-AfZt6b_Bq9cGbK8OZxXqOfnz_d33xtbr9_-XazuW0sl7Q0AkblbMdb0gnO7GAkZ5QTZVsHlHHj6EjbVklBB9cr4WzbMuc4Ja0iPbGOX6P3F91qrhrPRc8-W5gmEyAuWTPRESkpE6JC5QVqU8w5gdM1ntmko6ZEnzrSO_3UkT51pC8dVebbxyXLUEN84v0rpQI2FwDUUw8e0kkIgq2BJ7BFj9H_d8lfwZyq8A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Olivera Rodriguez, P.</creator><creator>Holzman, M.E.</creator><creator>Degano, M.F.</creator><creator>Faramiñán, A.M.G.</creator><creator>Rivas, R.E.</creator><creator>Bayala, M.I.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas</title><author>Olivera Rodriguez, P. ; Holzman, M.E. ; Degano, M.F. ; Faramiñán, A.M.G. ; Rivas, R.E. ; Bayala, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4ed9fc63506432cba7321309c5fe123af1d1559741bf894fc552ff31059080cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crop yield</topic><topic>Efficient agriculture</topic><topic>Evaporative fraction</topic><topic>Water footprint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivera Rodriguez, P.</creatorcontrib><creatorcontrib>Holzman, M.E.</creatorcontrib><creatorcontrib>Degano, M.F.</creatorcontrib><creatorcontrib>Faramiñán, A.M.G.</creatorcontrib><creatorcontrib>Rivas, R.E.</creatorcontrib><creatorcontrib>Bayala, M.I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivera Rodriguez, P.</au><au>Holzman, M.E.</au><au>Degano, M.F.</au><au>Faramiñán, A.M.G.</au><au>Rivas, R.E.</au><au>Bayala, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>763</volume><spage>142963</spage><epage>142963</epage><pages>142963-142963</pages><artnum>142963</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Agriculture accounts for about 70% of the fresh water use in the world, dominating rainfed production systems. As meeting future food demand will require an increase in crop production, new techniques are necessary to monitor the spatial variability of agricultural water use. However, the use of remote sensing for the water footprint estimation is limited. This study aims at evaluating the spatial variability of the soil-water consumption in soybean crops, also termed as green water footprint (WFgreen), in a sector of the Argentine Pampas using satellite data. WFgreen was evaluated at spatial resolution of 250 m, estimating the soil water availability through the evaporative fraction and crop yield from Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) data. In the analysed soybean plots, the WFgreen varied from 900 m3 t−1 to 1800 m3 t−1. The preliminary comparison of the method with field measurements showed a RMSE = 494 m3 t−1 and Bias = −410 m3 t−1, respectively. The high spatial variability reflected the heterogeneity of soil-water use efficiency. The proposed technique can be useful to obtain WFgreen maps at medium spatial resolutions (250 m–1000 m). Also, it can be applied in regions with poor ground data coverage to estimate the WFgreen, after a parameterization of the model. The contribution to our understanding of the relationship between soil-water availability, rainfed-crop productivity and then WFgreen is expected. [Display omitted] •The estimation of the Green Water Footprint can be optimized using satellite data•Spatial variability was obtained using evaporative fraction and yield data•The technique allows the calculation of Green Water Footprint at regional scale•It can be a contribution to previous methods for agricultural water use estimation</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33183816</pmid><doi>10.1016/j.scitotenv.2020.142963</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2021-04, Vol.763, p.142963-142963, Article 142963
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2460771244
source Elsevier ScienceDirect Journals
subjects Crop yield
Efficient agriculture
Evaporative fraction
Water footprint
title Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20variability%20of%20the%20green%20water%20footprint%20using%20a%20medium-resolution%20remote%20sensing%20technique:%20The%20case%20of%20soybean%20production%20in%20the%20Southeast%20Argentine%20Pampas&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Olivera%20Rodriguez,%20P.&rft.date=2021-04-01&rft.volume=763&rft.spage=142963&rft.epage=142963&rft.pages=142963-142963&rft.artnum=142963&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2020.142963&rft_dat=%3Cproquest_cross%3E2460771244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460771244&rft_id=info:pmid/33183816&rft_els_id=S0048969720364937&rfr_iscdi=true