Advancing Biosensors with Machine Learning
Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis,...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2020-11, Vol.5 (11), p.3346-3364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3364 |
---|---|
container_issue | 11 |
container_start_page | 3346 |
container_title | ACS sensors |
container_volume | 5 |
creator | Cui, Feiyun Yue, Yun Zhang, Yi Zhang, Ziming Zhou, H. Susan |
description | Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis. |
doi_str_mv | 10.1021/acssensors.0c01424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460768318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460768318</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpD7BAWSKklPErTpal4iUVsYG15doTmqp1it2A-HuMGh4rVjOLc690DyGnFCYUGL00Nkb0sQ1xAhaoYOKADBlXVc6LShz--QdkHOMKAKgsmCzhmAw4p6UUVA3JxdS9GW8b_5JdNW3fmL03u2X2YOyy8ZjN0QSfgBNyVJt1xHF_R-T55vppdpfPH2_vZ9N5brhgu9whq6xgzhWiMjUgSlcrbiwwZUGyUkprwIGy1FEOFtmiQi6hUIxBXSrLR-R837sN7WuHcac3TbS4XhuPbRc1EwWookwTEsr2qA1tjAFrvQ3NxoQPTUF_adK_mnSvKYXO-v5usUH3E_mWkoDJHkhhvWq74NPc_xo_AZIwdJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460768318</pqid></control><display><type>article</type><title>Advancing Biosensors with Machine Learning</title><source>ACS Publications</source><source>MEDLINE</source><creator>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</creator><creatorcontrib>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</creatorcontrib><description>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c01424</identifier><identifier>PMID: 33185417</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Biosensing Techniques ; Deep Learning ; Machine Learning ; Neural Networks, Computer</subject><ispartof>ACS sensors, 2020-11, Vol.5 (11), p.3346-3364</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</citedby><cites>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</cites><orcidid>0000-0002-6659-6965 ; 0000-0001-5055-1423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.0c01424$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.0c01424$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33185417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Feiyun</creatorcontrib><creatorcontrib>Yue, Yun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ziming</creatorcontrib><creatorcontrib>Zhou, H. Susan</creatorcontrib><title>Advancing Biosensors with Machine Learning</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</description><subject>Artificial Intelligence</subject><subject>Biosensing Techniques</subject><subject>Deep Learning</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolXpD7BAWSKklPErTpal4iUVsYG15doTmqp1it2A-HuMGh4rVjOLc690DyGnFCYUGL00Nkb0sQ1xAhaoYOKADBlXVc6LShz--QdkHOMKAKgsmCzhmAw4p6UUVA3JxdS9GW8b_5JdNW3fmL03u2X2YOyy8ZjN0QSfgBNyVJt1xHF_R-T55vppdpfPH2_vZ9N5brhgu9whq6xgzhWiMjUgSlcrbiwwZUGyUkprwIGy1FEOFtmiQi6hUIxBXSrLR-R837sN7WuHcac3TbS4XhuPbRc1EwWookwTEsr2qA1tjAFrvQ3NxoQPTUF_adK_mnSvKYXO-v5usUH3E_mWkoDJHkhhvWq74NPc_xo_AZIwdJA</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Cui, Feiyun</creator><creator>Yue, Yun</creator><creator>Zhang, Yi</creator><creator>Zhang, Ziming</creator><creator>Zhou, H. Susan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6659-6965</orcidid><orcidid>https://orcid.org/0000-0001-5055-1423</orcidid></search><sort><creationdate>20201125</creationdate><title>Advancing Biosensors with Machine Learning</title><author>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Biosensing Techniques</topic><topic>Deep Learning</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Feiyun</creatorcontrib><creatorcontrib>Yue, Yun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ziming</creatorcontrib><creatorcontrib>Zhou, H. Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Feiyun</au><au>Yue, Yun</au><au>Zhang, Yi</au><au>Zhang, Ziming</au><au>Zhou, H. Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Biosensors with Machine Learning</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>5</volume><issue>11</issue><spage>3346</spage><epage>3364</epage><pages>3346-3364</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33185417</pmid><doi>10.1021/acssensors.0c01424</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6659-6965</orcidid><orcidid>https://orcid.org/0000-0001-5055-1423</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2020-11, Vol.5 (11), p.3346-3364 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_2460768318 |
source | ACS Publications; MEDLINE |
subjects | Artificial Intelligence Biosensing Techniques Deep Learning Machine Learning Neural Networks, Computer |
title | Advancing Biosensors with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Biosensors%20with%20Machine%20Learning&rft.jtitle=ACS%20sensors&rft.au=Cui,%20Feiyun&rft.date=2020-11-25&rft.volume=5&rft.issue=11&rft.spage=3346&rft.epage=3364&rft.pages=3346-3364&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c01424&rft_dat=%3Cproquest_cross%3E2460768318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460768318&rft_id=info:pmid/33185417&rfr_iscdi=true |