Advancing Biosensors with Machine Learning

Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2020-11, Vol.5 (11), p.3346-3364
Hauptverfasser: Cui, Feiyun, Yue, Yun, Zhang, Yi, Zhang, Ziming, Zhou, H. Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3364
container_issue 11
container_start_page 3346
container_title ACS sensors
container_volume 5
creator Cui, Feiyun
Yue, Yun
Zhang, Yi
Zhang, Ziming
Zhou, H. Susan
description Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.
doi_str_mv 10.1021/acssensors.0c01424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460768318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460768318</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpD7BAWSKklPErTpal4iUVsYG15doTmqp1it2A-HuMGh4rVjOLc690DyGnFCYUGL00Nkb0sQ1xAhaoYOKADBlXVc6LShz--QdkHOMKAKgsmCzhmAw4p6UUVA3JxdS9GW8b_5JdNW3fmL03u2X2YOyy8ZjN0QSfgBNyVJt1xHF_R-T55vppdpfPH2_vZ9N5brhgu9whq6xgzhWiMjUgSlcrbiwwZUGyUkprwIGy1FEOFtmiQi6hUIxBXSrLR-R837sN7WuHcac3TbS4XhuPbRc1EwWookwTEsr2qA1tjAFrvQ3NxoQPTUF_adK_mnSvKYXO-v5usUH3E_mWkoDJHkhhvWq74NPc_xo_AZIwdJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460768318</pqid></control><display><type>article</type><title>Advancing Biosensors with Machine Learning</title><source>ACS Publications</source><source>MEDLINE</source><creator>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</creator><creatorcontrib>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</creatorcontrib><description>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c01424</identifier><identifier>PMID: 33185417</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Biosensing Techniques ; Deep Learning ; Machine Learning ; Neural Networks, Computer</subject><ispartof>ACS sensors, 2020-11, Vol.5 (11), p.3346-3364</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</citedby><cites>FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</cites><orcidid>0000-0002-6659-6965 ; 0000-0001-5055-1423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.0c01424$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.0c01424$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33185417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Feiyun</creatorcontrib><creatorcontrib>Yue, Yun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ziming</creatorcontrib><creatorcontrib>Zhou, H. Susan</creatorcontrib><title>Advancing Biosensors with Machine Learning</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</description><subject>Artificial Intelligence</subject><subject>Biosensing Techniques</subject><subject>Deep Learning</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolXpD7BAWSKklPErTpal4iUVsYG15doTmqp1it2A-HuMGh4rVjOLc690DyGnFCYUGL00Nkb0sQ1xAhaoYOKADBlXVc6LShz--QdkHOMKAKgsmCzhmAw4p6UUVA3JxdS9GW8b_5JdNW3fmL03u2X2YOyy8ZjN0QSfgBNyVJt1xHF_R-T55vppdpfPH2_vZ9N5brhgu9whq6xgzhWiMjUgSlcrbiwwZUGyUkprwIGy1FEOFtmiQi6hUIxBXSrLR-R837sN7WuHcac3TbS4XhuPbRc1EwWookwTEsr2qA1tjAFrvQ3NxoQPTUF_adK_mnSvKYXO-v5usUH3E_mWkoDJHkhhvWq74NPc_xo_AZIwdJA</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Cui, Feiyun</creator><creator>Yue, Yun</creator><creator>Zhang, Yi</creator><creator>Zhang, Ziming</creator><creator>Zhou, H. Susan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6659-6965</orcidid><orcidid>https://orcid.org/0000-0001-5055-1423</orcidid></search><sort><creationdate>20201125</creationdate><title>Advancing Biosensors with Machine Learning</title><author>Cui, Feiyun ; Yue, Yun ; Zhang, Yi ; Zhang, Ziming ; Zhou, H. Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-de29c42dd649af0ee5df73ac027c052855ca0d07c1d130ce2b9e35067220f87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Biosensing Techniques</topic><topic>Deep Learning</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Feiyun</creatorcontrib><creatorcontrib>Yue, Yun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ziming</creatorcontrib><creatorcontrib>Zhou, H. Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Feiyun</au><au>Yue, Yun</au><au>Zhang, Yi</au><au>Zhang, Ziming</au><au>Zhou, H. Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Biosensors with Machine Learning</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>5</volume><issue>11</issue><spage>3346</spage><epage>3364</epage><pages>3346-3364</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33185417</pmid><doi>10.1021/acssensors.0c01424</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6659-6965</orcidid><orcidid>https://orcid.org/0000-0001-5055-1423</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2020-11, Vol.5 (11), p.3346-3364
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2460768318
source ACS Publications; MEDLINE
subjects Artificial Intelligence
Biosensing Techniques
Deep Learning
Machine Learning
Neural Networks, Computer
title Advancing Biosensors with Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Biosensors%20with%20Machine%20Learning&rft.jtitle=ACS%20sensors&rft.au=Cui,%20Feiyun&rft.date=2020-11-25&rft.volume=5&rft.issue=11&rft.spage=3346&rft.epage=3364&rft.pages=3346-3364&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c01424&rft_dat=%3Cproquest_cross%3E2460768318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460768318&rft_id=info:pmid/33185417&rfr_iscdi=true