Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs

The identification of crystalline drug polymorphs using terahertz vibrational spectroscopy is a powerful approach for the nondestructive and noninvasive characterization of solid-state pharmaceuticals. However, a complete understanding of the terahertz spectra of molecular solids is challenging to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (47), p.9793-9800
Hauptverfasser: Davis, Margaret P, Mohara, Mizuki, Shimura, Kei, Korter, Timothy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9800
container_issue 47
container_start_page 9793
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Davis, Margaret P
Mohara, Mizuki
Shimura, Kei
Korter, Timothy M
description The identification of crystalline drug polymorphs using terahertz vibrational spectroscopy is a powerful approach for the nondestructive and noninvasive characterization of solid-state pharmaceuticals. However, a complete understanding of the terahertz spectra of molecular solids is challenging to obtain because of the complex nature of the low-frequency vibrational motions found in the sub-3 THz (sub-100 cm–1) range. Unambiguous assignments of the observed spectral features can be achieved through quantum mechanical solid-state simulations of crystal structures and lattice vibrations utilizing the periodic boundary condition approach. The terahertz spectra of two polymorphs of enalapril maleate are presented here to demonstrate that even large pharmaceuticals can be successfully modeled using solid-state density functional theory, including cocrystalline solids comprised of multiple distinct species. These simulations enable spectral assignments to be made, but also provide insights into the conformational and cohesion energies that contribute to the polymorph stabilities. The results reveal that the Form II polymorph of enalapril maleate is the more stable of the two under ambient conditions, and that this stability is driven by a greater intermolecular cohesion energy as compared to Form I.
doi_str_mv 10.1021/acs.jpca.0c08093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460768229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460768229</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-6eb20d351eb233f09dc1e55aec899057e9fccb6849ce36b9163f140d955525973</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwM3pkIOVsx2k8VlX5kIpAamGNHOdCUiVxsJ2h_PW4tCvTu9P93knvRdEthRkFRh-UdrPdoNUMNGQg-Vk0oYJBLBgV52GGTMYi5fIyunJuBwCUs2QS1ZumG1vlG9MT1Zdk4Vzz1XfYe2Iq4mskW7SqRut_yGdT2D9StWQzoPZWHaBV2NVgm5a8qhaVR7I02u6dD9i7afedsUPtrqOLSrUOb046jT4eV9vlc7x-e3pZLtax4pT7OMWCQckFDcp5BbLUFIVQqDMpQcxRVloXaZZIjTwtJE15RRMopRCCCTnn0-ju-Hew5ntE5_OucRrbVvVoRpezJIV5mjEmAwpHVFvjnMUqDyk6Zfc5hfxQah5KzQ-l5qdSg-X-aPm7mNGG7O5__BdtfHwv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460768229</pqid></control><display><type>article</type><title>Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs</title><source>ACS Publications</source><creator>Davis, Margaret P ; Mohara, Mizuki ; Shimura, Kei ; Korter, Timothy M</creator><creatorcontrib>Davis, Margaret P ; Mohara, Mizuki ; Shimura, Kei ; Korter, Timothy M</creatorcontrib><description>The identification of crystalline drug polymorphs using terahertz vibrational spectroscopy is a powerful approach for the nondestructive and noninvasive characterization of solid-state pharmaceuticals. However, a complete understanding of the terahertz spectra of molecular solids is challenging to obtain because of the complex nature of the low-frequency vibrational motions found in the sub-3 THz (sub-100 cm–1) range. Unambiguous assignments of the observed spectral features can be achieved through quantum mechanical solid-state simulations of crystal structures and lattice vibrations utilizing the periodic boundary condition approach. The terahertz spectra of two polymorphs of enalapril maleate are presented here to demonstrate that even large pharmaceuticals can be successfully modeled using solid-state density functional theory, including cocrystalline solids comprised of multiple distinct species. These simulations enable spectral assignments to be made, but also provide insights into the conformational and cohesion energies that contribute to the polymorph stabilities. The results reveal that the Form II polymorph of enalapril maleate is the more stable of the two under ambient conditions, and that this stability is driven by a greater intermolecular cohesion energy as compared to Form I.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c08093</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-11, Vol.124 (47), p.9793-9800</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-6eb20d351eb233f09dc1e55aec899057e9fccb6849ce36b9163f140d955525973</citedby><cites>FETCH-LOGICAL-a313t-6eb20d351eb233f09dc1e55aec899057e9fccb6849ce36b9163f140d955525973</cites><orcidid>0000-0002-0398-5680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c08093$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c08093$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Davis, Margaret P</creatorcontrib><creatorcontrib>Mohara, Mizuki</creatorcontrib><creatorcontrib>Shimura, Kei</creatorcontrib><creatorcontrib>Korter, Timothy M</creatorcontrib><title>Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The identification of crystalline drug polymorphs using terahertz vibrational spectroscopy is a powerful approach for the nondestructive and noninvasive characterization of solid-state pharmaceuticals. However, a complete understanding of the terahertz spectra of molecular solids is challenging to obtain because of the complex nature of the low-frequency vibrational motions found in the sub-3 THz (sub-100 cm–1) range. Unambiguous assignments of the observed spectral features can be achieved through quantum mechanical solid-state simulations of crystal structures and lattice vibrations utilizing the periodic boundary condition approach. The terahertz spectra of two polymorphs of enalapril maleate are presented here to demonstrate that even large pharmaceuticals can be successfully modeled using solid-state density functional theory, including cocrystalline solids comprised of multiple distinct species. These simulations enable spectral assignments to be made, but also provide insights into the conformational and cohesion energies that contribute to the polymorph stabilities. The results reveal that the Form II polymorph of enalapril maleate is the more stable of the two under ambient conditions, and that this stability is driven by a greater intermolecular cohesion energy as compared to Form I.</description><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxSMEEqWwM3pkIOVsx2k8VlX5kIpAamGNHOdCUiVxsJ2h_PW4tCvTu9P93knvRdEthRkFRh-UdrPdoNUMNGQg-Vk0oYJBLBgV52GGTMYi5fIyunJuBwCUs2QS1ZumG1vlG9MT1Zdk4Vzz1XfYe2Iq4mskW7SqRut_yGdT2D9StWQzoPZWHaBV2NVgm5a8qhaVR7I02u6dD9i7afedsUPtrqOLSrUOb046jT4eV9vlc7x-e3pZLtax4pT7OMWCQckFDcp5BbLUFIVQqDMpQcxRVloXaZZIjTwtJE15RRMopRCCCTnn0-ju-Hew5ntE5_OucRrbVvVoRpezJIV5mjEmAwpHVFvjnMUqDyk6Zfc5hfxQah5KzQ-l5qdSg-X-aPm7mNGG7O5__BdtfHwv</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Davis, Margaret P</creator><creator>Mohara, Mizuki</creator><creator>Shimura, Kei</creator><creator>Korter, Timothy M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0398-5680</orcidid></search><sort><creationdate>20201125</creationdate><title>Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs</title><author>Davis, Margaret P ; Mohara, Mizuki ; Shimura, Kei ; Korter, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-6eb20d351eb233f09dc1e55aec899057e9fccb6849ce36b9163f140d955525973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Margaret P</creatorcontrib><creatorcontrib>Mohara, Mizuki</creatorcontrib><creatorcontrib>Shimura, Kei</creatorcontrib><creatorcontrib>Korter, Timothy M</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Margaret P</au><au>Mohara, Mizuki</au><au>Shimura, Kei</au><au>Korter, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>124</volume><issue>47</issue><spage>9793</spage><epage>9800</epage><pages>9793-9800</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The identification of crystalline drug polymorphs using terahertz vibrational spectroscopy is a powerful approach for the nondestructive and noninvasive characterization of solid-state pharmaceuticals. However, a complete understanding of the terahertz spectra of molecular solids is challenging to obtain because of the complex nature of the low-frequency vibrational motions found in the sub-3 THz (sub-100 cm–1) range. Unambiguous assignments of the observed spectral features can be achieved through quantum mechanical solid-state simulations of crystal structures and lattice vibrations utilizing the periodic boundary condition approach. The terahertz spectra of two polymorphs of enalapril maleate are presented here to demonstrate that even large pharmaceuticals can be successfully modeled using solid-state density functional theory, including cocrystalline solids comprised of multiple distinct species. These simulations enable spectral assignments to be made, but also provide insights into the conformational and cohesion energies that contribute to the polymorph stabilities. The results reveal that the Form II polymorph of enalapril maleate is the more stable of the two under ambient conditions, and that this stability is driven by a greater intermolecular cohesion energy as compared to Form I.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c08093</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0398-5680</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (47), p.9793-9800
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2460768229
source ACS Publications
subjects A: Spectroscopy, Molecular Structure, and Quantum Chemistry
title Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20Assignment%20of%20the%20Terahertz%20Vibrational%20Spectra%20of%20Enalapril%20Maleate%20Cocrystal%20Polymorphs&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Davis,%20Margaret%20P&rft.date=2020-11-25&rft.volume=124&rft.issue=47&rft.spage=9793&rft.epage=9800&rft.pages=9793-9800&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c08093&rft_dat=%3Cproquest_cross%3E2460768229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460768229&rft_id=info:pmid/&rfr_iscdi=true