Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy
The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanopartic...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-12, Vol.20 (12), p.8704-8710 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8710 |
---|---|
container_issue | 12 |
container_start_page | 8704 |
container_title | Nano letters |
container_volume | 20 |
creator | Bae, Yuna Lim, Kitaek Kim, Seulwoo Kang, Dohun Kim, Byung Hyo Kim, Joodeok Kang, Sungsu Jeon, Sungho Cho, JunBeom Lee, Won Bo Lee, Won Chul Park, Jungwon |
description | The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation. |
doi_str_mv | 10.1021/acs.nanolett.0c03517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460762843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460762843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxi0EYv_AGyDkI5eUcZw4yRHK0kXqwoHlHE3sMfUqtbN2gtRX4Klx1e4eOc1o9PtmPvtj7J2AlYBSfESdVh59GGmeV6BB1qJ5wS5FLaFQXVe-fO7b6oJdpfQAAJ2s4TW7kFK0Cipxyf5u3W_0pvhCE3lDfubrgCMlTV4T_0w7_ONCTDxYvgmj4d_zxQnj7HSG-M95MY4MHw78bhnzcIf7gSLfRJx25Ilv3ePiDF_TOPL7iD7tXUoueH4zkp5jbu6cjiHpMB3esFcWx0Rvz_Wa_fp6c7--LbY_Nt_Wn7YFyqqdi0F2CIOV2korG5TWDKIlQgVWGlUqpKYFolo3UFpjuooqEAaVqmvQpW7kNftw2jvF8LhQmvtsSmeH6CksqS8rBY0q20pmtDqhR48pku2n6PYYD72A_phCn1Pon1Lozylk2fvzhWXYk3kWPX17BuAEHOUPYYk-P_j_O_8BGeyavQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460762843</pqid></control><display><type>article</type><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><source>ACS Publications</source><creator>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</creator><creatorcontrib>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</creatorcontrib><description>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c03517</identifier><identifier>PMID: 33186041</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-12, Vol.20 (12), p.8704-8710</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</citedby><cites>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</cites><orcidid>0000-0003-2927-4331 ; 0000-0002-4098-0053 ; 0000-0001-8479-0836 ; 0000-0001-7801-083X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c03517$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c03517$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33186041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Yuna</creatorcontrib><creatorcontrib>Lim, Kitaek</creatorcontrib><creatorcontrib>Kim, Seulwoo</creatorcontrib><creatorcontrib>Kang, Dohun</creatorcontrib><creatorcontrib>Kim, Byung Hyo</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Cho, JunBeom</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAQxi0EYv_AGyDkI5eUcZw4yRHK0kXqwoHlHE3sMfUqtbN2gtRX4Klx1e4eOc1o9PtmPvtj7J2AlYBSfESdVh59GGmeV6BB1qJ5wS5FLaFQXVe-fO7b6oJdpfQAAJ2s4TW7kFK0Cipxyf5u3W_0pvhCE3lDfubrgCMlTV4T_0w7_ONCTDxYvgmj4d_zxQnj7HSG-M95MY4MHw78bhnzcIf7gSLfRJx25Ilv3ePiDF_TOPL7iD7tXUoueH4zkp5jbu6cjiHpMB3esFcWx0Rvz_Wa_fp6c7--LbY_Nt_Wn7YFyqqdi0F2CIOV2korG5TWDKIlQgVWGlUqpKYFolo3UFpjuooqEAaVqmvQpW7kNftw2jvF8LhQmvtsSmeH6CksqS8rBY0q20pmtDqhR48pku2n6PYYD72A_phCn1Pon1Lozylk2fvzhWXYk3kWPX17BuAEHOUPYYk-P_j_O_8BGeyavQ</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Bae, Yuna</creator><creator>Lim, Kitaek</creator><creator>Kim, Seulwoo</creator><creator>Kang, Dohun</creator><creator>Kim, Byung Hyo</creator><creator>Kim, Joodeok</creator><creator>Kang, Sungsu</creator><creator>Jeon, Sungho</creator><creator>Cho, JunBeom</creator><creator>Lee, Won Bo</creator><creator>Lee, Won Chul</creator><creator>Park, Jungwon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0002-4098-0053</orcidid><orcidid>https://orcid.org/0000-0001-8479-0836</orcidid><orcidid>https://orcid.org/0000-0001-7801-083X</orcidid></search><sort><creationdate>20201209</creationdate><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><author>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Yuna</creatorcontrib><creatorcontrib>Lim, Kitaek</creatorcontrib><creatorcontrib>Kim, Seulwoo</creatorcontrib><creatorcontrib>Kang, Dohun</creatorcontrib><creatorcontrib>Kim, Byung Hyo</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Cho, JunBeom</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Yuna</au><au>Lim, Kitaek</au><au>Kim, Seulwoo</au><au>Kang, Dohun</au><au>Kim, Byung Hyo</au><au>Kim, Joodeok</au><au>Kang, Sungsu</au><au>Jeon, Sungho</au><au>Cho, JunBeom</au><au>Lee, Won Bo</au><au>Lee, Won Chul</au><au>Park, Jungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>20</volume><issue>12</issue><spage>8704</spage><epage>8710</epage><pages>8704-8710</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33186041</pmid><doi>10.1021/acs.nanolett.0c03517</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0002-4098-0053</orcidid><orcidid>https://orcid.org/0000-0001-8479-0836</orcidid><orcidid>https://orcid.org/0000-0001-7801-083X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-12, Vol.20 (12), p.8704-8710 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2460762843 |
source | ACS Publications |
title | Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Dependent%20Coalescence%20Behaviors%20of%20Gold%20Nanoparticles%20Studied%20by%20Multichamber%20Graphene%20Liquid%20Cell%20Transmission%20Electron%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Bae,%20Yuna&rft.date=2020-12-09&rft.volume=20&rft.issue=12&rft.spage=8704&rft.epage=8710&rft.pages=8704-8710&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c03517&rft_dat=%3Cproquest_cross%3E2460762843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460762843&rft_id=info:pmid/33186041&rfr_iscdi=true |