Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy

The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanopartic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-12, Vol.20 (12), p.8704-8710
Hauptverfasser: Bae, Yuna, Lim, Kitaek, Kim, Seulwoo, Kang, Dohun, Kim, Byung Hyo, Kim, Joodeok, Kang, Sungsu, Jeon, Sungho, Cho, JunBeom, Lee, Won Bo, Lee, Won Chul, Park, Jungwon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8710
container_issue 12
container_start_page 8704
container_title Nano letters
container_volume 20
creator Bae, Yuna
Lim, Kitaek
Kim, Seulwoo
Kang, Dohun
Kim, Byung Hyo
Kim, Joodeok
Kang, Sungsu
Jeon, Sungho
Cho, JunBeom
Lee, Won Bo
Lee, Won Chul
Park, Jungwon
description The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.
doi_str_mv 10.1021/acs.nanolett.0c03517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460762843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460762843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxi0EYv_AGyDkI5eUcZw4yRHK0kXqwoHlHE3sMfUqtbN2gtRX4Klx1e4eOc1o9PtmPvtj7J2AlYBSfESdVh59GGmeV6BB1qJ5wS5FLaFQXVe-fO7b6oJdpfQAAJ2s4TW7kFK0Cipxyf5u3W_0pvhCE3lDfubrgCMlTV4T_0w7_ONCTDxYvgmj4d_zxQnj7HSG-M95MY4MHw78bhnzcIf7gSLfRJx25Ilv3ePiDF_TOPL7iD7tXUoueH4zkp5jbu6cjiHpMB3esFcWx0Rvz_Wa_fp6c7--LbY_Nt_Wn7YFyqqdi0F2CIOV2korG5TWDKIlQgVWGlUqpKYFolo3UFpjuooqEAaVqmvQpW7kNftw2jvF8LhQmvtsSmeH6CksqS8rBY0q20pmtDqhR48pku2n6PYYD72A_phCn1Pon1Lozylk2fvzhWXYk3kWPX17BuAEHOUPYYk-P_j_O_8BGeyavQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460762843</pqid></control><display><type>article</type><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><source>ACS Publications</source><creator>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</creator><creatorcontrib>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</creatorcontrib><description>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c03517</identifier><identifier>PMID: 33186041</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-12, Vol.20 (12), p.8704-8710</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</citedby><cites>FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</cites><orcidid>0000-0003-2927-4331 ; 0000-0002-4098-0053 ; 0000-0001-8479-0836 ; 0000-0001-7801-083X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c03517$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c03517$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33186041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bae, Yuna</creatorcontrib><creatorcontrib>Lim, Kitaek</creatorcontrib><creatorcontrib>Kim, Seulwoo</creatorcontrib><creatorcontrib>Kang, Dohun</creatorcontrib><creatorcontrib>Kim, Byung Hyo</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Cho, JunBeom</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAQxi0EYv_AGyDkI5eUcZw4yRHK0kXqwoHlHE3sMfUqtbN2gtRX4Klx1e4eOc1o9PtmPvtj7J2AlYBSfESdVh59GGmeV6BB1qJ5wS5FLaFQXVe-fO7b6oJdpfQAAJ2s4TW7kFK0Cipxyf5u3W_0pvhCE3lDfubrgCMlTV4T_0w7_ONCTDxYvgmj4d_zxQnj7HSG-M95MY4MHw78bhnzcIf7gSLfRJx25Ilv3ePiDF_TOPL7iD7tXUoueH4zkp5jbu6cjiHpMB3esFcWx0Rvz_Wa_fp6c7--LbY_Nt_Wn7YFyqqdi0F2CIOV2korG5TWDKIlQgVWGlUqpKYFolo3UFpjuooqEAaVqmvQpW7kNftw2jvF8LhQmvtsSmeH6CksqS8rBY0q20pmtDqhR48pku2n6PYYD72A_phCn1Pon1Lozylk2fvzhWXYk3kWPX17BuAEHOUPYYk-P_j_O_8BGeyavQ</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Bae, Yuna</creator><creator>Lim, Kitaek</creator><creator>Kim, Seulwoo</creator><creator>Kang, Dohun</creator><creator>Kim, Byung Hyo</creator><creator>Kim, Joodeok</creator><creator>Kang, Sungsu</creator><creator>Jeon, Sungho</creator><creator>Cho, JunBeom</creator><creator>Lee, Won Bo</creator><creator>Lee, Won Chul</creator><creator>Park, Jungwon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0002-4098-0053</orcidid><orcidid>https://orcid.org/0000-0001-8479-0836</orcidid><orcidid>https://orcid.org/0000-0001-7801-083X</orcidid></search><sort><creationdate>20201209</creationdate><title>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</title><author>Bae, Yuna ; Lim, Kitaek ; Kim, Seulwoo ; Kang, Dohun ; Kim, Byung Hyo ; Kim, Joodeok ; Kang, Sungsu ; Jeon, Sungho ; Cho, JunBeom ; Lee, Won Bo ; Lee, Won Chul ; Park, Jungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-b39a0bf3cf3f37a3fdb18eea60f3d626ae780ee5c702fdd94e401da66550c2c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Yuna</creatorcontrib><creatorcontrib>Lim, Kitaek</creatorcontrib><creatorcontrib>Kim, Seulwoo</creatorcontrib><creatorcontrib>Kang, Dohun</creatorcontrib><creatorcontrib>Kim, Byung Hyo</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Cho, JunBeom</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Yuna</au><au>Lim, Kitaek</au><au>Kim, Seulwoo</au><au>Kang, Dohun</au><au>Kim, Byung Hyo</au><au>Kim, Joodeok</au><au>Kang, Sungsu</au><au>Jeon, Sungho</au><au>Cho, JunBeom</au><au>Lee, Won Bo</au><au>Lee, Won Chul</au><au>Park, Jungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>20</volume><issue>12</issue><spage>8704</spage><epage>8710</epage><pages>8704-8710</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33186041</pmid><doi>10.1021/acs.nanolett.0c03517</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0002-4098-0053</orcidid><orcidid>https://orcid.org/0000-0001-8479-0836</orcidid><orcidid>https://orcid.org/0000-0001-7801-083X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-12, Vol.20 (12), p.8704-8710
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2460762843
source ACS Publications
title Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Dependent%20Coalescence%20Behaviors%20of%20Gold%20Nanoparticles%20Studied%20by%20Multichamber%20Graphene%20Liquid%20Cell%20Transmission%20Electron%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Bae,%20Yuna&rft.date=2020-12-09&rft.volume=20&rft.issue=12&rft.spage=8704&rft.epage=8710&rft.pages=8704-8710&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c03517&rft_dat=%3Cproquest_cross%3E2460762843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460762843&rft_id=info:pmid/33186041&rfr_iscdi=true