Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides

Reversible-deactivation chain transfer is a viable strategy to increase the catalytic efficiency of ring-opening polymerizations, such as the alternating copolymerization of epoxides and cyclic anhydrides. In conjunction with the catalyst, protic chain transfer agents (CTAs) initiate polymerization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-11, Vol.142 (47), p.20161-20169
Hauptverfasser: Lidston, Claire A. L, Abel, Brooks A, Coates, Geoffrey W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20169
container_issue 47
container_start_page 20161
container_title Journal of the American Chemical Society
container_volume 142
creator Lidston, Claire A. L
Abel, Brooks A
Coates, Geoffrey W
description Reversible-deactivation chain transfer is a viable strategy to increase the catalytic efficiency of ring-opening polymerizations, such as the alternating copolymerization of epoxides and cyclic anhydrides. In conjunction with the catalyst, protic chain transfer agents (CTAs) initiate polymerization and facilitate rapid proton transfer between active and dormant chains. Functional-group-tolerant Lewis acid catalysts are therefore required to successfully apply protic CTAs in reversible-deactivation ring-opening copolymerizations (RD-ROCOP), yet the predominant binary Lewis acid catalyst/nucleophilic cocatalyst systems suffer lower polymerization rates when used with protic CTAs. New mechanistic insight into the inhibition pathways reveals that the alcohol chain ends compete with epoxide binding to the Lewis acid and hydrogen-bond with anionic chain ends to impede epoxide ring opening. We report that a bifunctional aminocyclopropenium aluminum salen complex maintains excellent activity in the presence of protic functionality, exhibiting resilience against these inhibition pathways, even at high CTA concentrations. We apply reversible-deactivation chain transfer in the bifunctional ROCOP system to demonstrate precise molecular-weight control, CTA functional group scope, and accessible polymer architectures.
doi_str_mv 10.1021/jacs.0c10014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460080869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460080869</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-20f484384288b6b923b1c44280c5089eb183e40b25999bc35a54ad252e0b99783</originalsourceid><addsrcrecordid>eNptkMFP2zAUxq2JaXTdbjsjHzks8Ow4qXNkgUGlSqCKnSPbccBVamd2UpH9AfzdOG03Ljs9fe_73mfrh9A3AhcEKLncCBUuQBEAwj6gGckoJBmh-QmaAQBNFjxPT9HnEDZRMsrJJ3SapmSRM5rP0OsP0wxW9cZZ0eJS9KIdgwn4weudtn3AS_tspJl8bCxex60PRrY6udYinu3E3lob-5Tcd9rGiUvXuXbcam_-7N2AXYNvOvdiah2wsDUuR9Uaha_s81j7afsFfWxEG_TX45yjXz9vHsu7ZHV_uyyvVomIP-8TCg3jLOVRcJnLgqaSKBYVqAx4oSXhqWYgaVYUhVRpJjImappRDbIoFjydo_NDb-fd70GHvtqaoHTbCqvdECrKcgAOPC9i9PshqrwLweum6rzZCj9WBKqJfDWRr47kY_zs2DzIra7_hf-ifn96utq4wUfg4f9db83Cja8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460080869</pqid></control><display><type>article</type><title>Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides</title><source>American Chemical Society Journals</source><creator>Lidston, Claire A. L ; Abel, Brooks A ; Coates, Geoffrey W</creator><creatorcontrib>Lidston, Claire A. L ; Abel, Brooks A ; Coates, Geoffrey W</creatorcontrib><description>Reversible-deactivation chain transfer is a viable strategy to increase the catalytic efficiency of ring-opening polymerizations, such as the alternating copolymerization of epoxides and cyclic anhydrides. In conjunction with the catalyst, protic chain transfer agents (CTAs) initiate polymerization and facilitate rapid proton transfer between active and dormant chains. Functional-group-tolerant Lewis acid catalysts are therefore required to successfully apply protic CTAs in reversible-deactivation ring-opening copolymerizations (RD-ROCOP), yet the predominant binary Lewis acid catalyst/nucleophilic cocatalyst systems suffer lower polymerization rates when used with protic CTAs. New mechanistic insight into the inhibition pathways reveals that the alcohol chain ends compete with epoxide binding to the Lewis acid and hydrogen-bond with anionic chain ends to impede epoxide ring opening. We report that a bifunctional aminocyclopropenium aluminum salen complex maintains excellent activity in the presence of protic functionality, exhibiting resilience against these inhibition pathways, even at high CTA concentrations. We apply reversible-deactivation chain transfer in the bifunctional ROCOP system to demonstrate precise molecular-weight control, CTA functional group scope, and accessible polymer architectures.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c10014</identifier><identifier>PMID: 33176426</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-11, Vol.142 (47), p.20161-20169</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-20f484384288b6b923b1c44280c5089eb183e40b25999bc35a54ad252e0b99783</citedby><cites>FETCH-LOGICAL-a428t-20f484384288b6b923b1c44280c5089eb183e40b25999bc35a54ad252e0b99783</cites><orcidid>0000-0002-4541-8190 ; 0000-0002-2288-1975 ; 0000-0002-3400-2552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c10014$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c10014$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33176426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lidston, Claire A. L</creatorcontrib><creatorcontrib>Abel, Brooks A</creatorcontrib><creatorcontrib>Coates, Geoffrey W</creatorcontrib><title>Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Reversible-deactivation chain transfer is a viable strategy to increase the catalytic efficiency of ring-opening polymerizations, such as the alternating copolymerization of epoxides and cyclic anhydrides. In conjunction with the catalyst, protic chain transfer agents (CTAs) initiate polymerization and facilitate rapid proton transfer between active and dormant chains. Functional-group-tolerant Lewis acid catalysts are therefore required to successfully apply protic CTAs in reversible-deactivation ring-opening copolymerizations (RD-ROCOP), yet the predominant binary Lewis acid catalyst/nucleophilic cocatalyst systems suffer lower polymerization rates when used with protic CTAs. New mechanistic insight into the inhibition pathways reveals that the alcohol chain ends compete with epoxide binding to the Lewis acid and hydrogen-bond with anionic chain ends to impede epoxide ring opening. We report that a bifunctional aminocyclopropenium aluminum salen complex maintains excellent activity in the presence of protic functionality, exhibiting resilience against these inhibition pathways, even at high CTA concentrations. We apply reversible-deactivation chain transfer in the bifunctional ROCOP system to demonstrate precise molecular-weight control, CTA functional group scope, and accessible polymer architectures.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkMFP2zAUxq2JaXTdbjsjHzks8Ow4qXNkgUGlSqCKnSPbccBVamd2UpH9AfzdOG03Ljs9fe_73mfrh9A3AhcEKLncCBUuQBEAwj6gGckoJBmh-QmaAQBNFjxPT9HnEDZRMsrJJ3SapmSRM5rP0OsP0wxW9cZZ0eJS9KIdgwn4weudtn3AS_tspJl8bCxex60PRrY6udYinu3E3lob-5Tcd9rGiUvXuXbcam_-7N2AXYNvOvdiah2wsDUuR9Uaha_s81j7afsFfWxEG_TX45yjXz9vHsu7ZHV_uyyvVomIP-8TCg3jLOVRcJnLgqaSKBYVqAx4oSXhqWYgaVYUhVRpJjImappRDbIoFjydo_NDb-fd70GHvtqaoHTbCqvdECrKcgAOPC9i9PshqrwLweum6rzZCj9WBKqJfDWRr47kY_zs2DzIra7_hf-ifn96utq4wUfg4f9db83Cja8</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Lidston, Claire A. L</creator><creator>Abel, Brooks A</creator><creator>Coates, Geoffrey W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4541-8190</orcidid><orcidid>https://orcid.org/0000-0002-2288-1975</orcidid><orcidid>https://orcid.org/0000-0002-3400-2552</orcidid></search><sort><creationdate>20201125</creationdate><title>Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides</title><author>Lidston, Claire A. L ; Abel, Brooks A ; Coates, Geoffrey W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-20f484384288b6b923b1c44280c5089eb183e40b25999bc35a54ad252e0b99783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lidston, Claire A. L</creatorcontrib><creatorcontrib>Abel, Brooks A</creatorcontrib><creatorcontrib>Coates, Geoffrey W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lidston, Claire A. L</au><au>Abel, Brooks A</au><au>Coates, Geoffrey W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>142</volume><issue>47</issue><spage>20161</spage><epage>20169</epage><pages>20161-20169</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Reversible-deactivation chain transfer is a viable strategy to increase the catalytic efficiency of ring-opening polymerizations, such as the alternating copolymerization of epoxides and cyclic anhydrides. In conjunction with the catalyst, protic chain transfer agents (CTAs) initiate polymerization and facilitate rapid proton transfer between active and dormant chains. Functional-group-tolerant Lewis acid catalysts are therefore required to successfully apply protic CTAs in reversible-deactivation ring-opening copolymerizations (RD-ROCOP), yet the predominant binary Lewis acid catalyst/nucleophilic cocatalyst systems suffer lower polymerization rates when used with protic CTAs. New mechanistic insight into the inhibition pathways reveals that the alcohol chain ends compete with epoxide binding to the Lewis acid and hydrogen-bond with anionic chain ends to impede epoxide ring opening. We report that a bifunctional aminocyclopropenium aluminum salen complex maintains excellent activity in the presence of protic functionality, exhibiting resilience against these inhibition pathways, even at high CTA concentrations. We apply reversible-deactivation chain transfer in the bifunctional ROCOP system to demonstrate precise molecular-weight control, CTA functional group scope, and accessible polymer architectures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33176426</pmid><doi>10.1021/jacs.0c10014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4541-8190</orcidid><orcidid>https://orcid.org/0000-0002-2288-1975</orcidid><orcidid>https://orcid.org/0000-0002-3400-2552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-11, Vol.142 (47), p.20161-20169
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2460080869
source American Chemical Society Journals
title Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20Catalysis%20Prevents%20Inhibition%20in%20Reversible-Deactivation%20Ring-Opening%20Copolymerizations%20of%20Epoxides%20and%20Cyclic%20Anhydrides&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lidston,%20Claire%20A.%20L&rft.date=2020-11-25&rft.volume=142&rft.issue=47&rft.spage=20161&rft.epage=20169&rft.pages=20161-20169&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c10014&rft_dat=%3Cproquest_cross%3E2460080869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460080869&rft_id=info:pmid/33176426&rfr_iscdi=true