Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study

Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-11, Vol.22 (45), p.26223-2623
Hauptverfasser: Xu, Ziwei, Song, Ruofei, Wang, Mingyuan, Zhang, Xiangzhao, Liu, Guiwu, Qiao, Guanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2623
container_issue 45
container_start_page 26223
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Xu, Ziwei
Song, Ruofei
Wang, Mingyuan
Zhang, Xiangzhao
Liu, Guiwu
Qiao, Guanjun
description Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom ( i.e. , V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N 2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N 2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts. A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N 2 to ammonia (NH 3 ) under ambient conditions.
doi_str_mv 10.1039/d0cp04315j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459628968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464423786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJE9yubxJu01g8KCtaThzDZ3ZSUJFt3N4f-926tVJA5zMD7zfB4g9A5JTeU8OJWE7UmgtN0dYBGVEieFCQXh_s5k8foxPsVIYSmlI_Q53vTL1uDIdgu0XZtNAbnTR8Lg8emNSo4qyBAu_EB19ZhZ_Sg4hbumygtTY-DxdB1tm_gDgOezhbYh0FvTtFRDa03Z799jD5mD4vJUzJ_fXye3M8TxVMaEq2gpoIAZ2mWgonGSK4lM0pmVS0rYUSuNdM8E5pCxVhV5FIBE6So0jqKfIyudnfXzn4Nxoeya7wybQu9sYMvmUgLyfJCbtHLf-jKDq6P7iIlhWA8y2WkrneUctZ7Z-py7ZoO3KakpNzmXE7J5O0n55cIX-xg59We-_sD_wbLqHmq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464423786</pqid></control><display><type>article</type><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</creator><creatorcontrib>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</creatorcontrib><description>Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom ( i.e. , V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N 2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N 2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts. A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N 2 to ammonia (NH 3 ) under ambient conditions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp04315j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Catalysts ; Chemical industry ; Chemical reduction ; Chromium ; Cobalt ; Copper ; Density functional theory ; Electrocatalysts ; Gold ; Iron ; Nanomaterials ; Nitrogen ; Nitrogenation ; Palladium ; Platinum ; Ruthenium ; Silver ; Transition metals</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-11, Vol.22 (45), p.26223-2623</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</citedby><cites>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</cites><orcidid>0000-0001-9834-3789 ; 0000-0002-6143-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Xu, Ziwei</creatorcontrib><creatorcontrib>Song, Ruofei</creatorcontrib><creatorcontrib>Wang, Mingyuan</creatorcontrib><creatorcontrib>Zhang, Xiangzhao</creatorcontrib><creatorcontrib>Liu, Guiwu</creatorcontrib><creatorcontrib>Qiao, Guanjun</creatorcontrib><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><title>Physical chemistry chemical physics : PCCP</title><description>Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom ( i.e. , V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N 2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N 2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts. A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N 2 to ammonia (NH 3 ) under ambient conditions.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Gold</subject><subject>Iron</subject><subject>Nanomaterials</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Ruthenium</subject><subject>Silver</subject><subject>Transition metals</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJE9yubxJu01g8KCtaThzDZ3ZSUJFt3N4f-926tVJA5zMD7zfB4g9A5JTeU8OJWE7UmgtN0dYBGVEieFCQXh_s5k8foxPsVIYSmlI_Q53vTL1uDIdgu0XZtNAbnTR8Lg8emNSo4qyBAu_EB19ZhZ_Sg4hbumygtTY-DxdB1tm_gDgOezhbYh0FvTtFRDa03Z799jD5mD4vJUzJ_fXye3M8TxVMaEq2gpoIAZ2mWgonGSK4lM0pmVS0rYUSuNdM8E5pCxVhV5FIBE6So0jqKfIyudnfXzn4Nxoeya7wybQu9sYMvmUgLyfJCbtHLf-jKDq6P7iIlhWA8y2WkrneUctZ7Z-py7ZoO3KakpNzmXE7J5O0n55cIX-xg59We-_sD_wbLqHmq</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Xu, Ziwei</creator><creator>Song, Ruofei</creator><creator>Wang, Mingyuan</creator><creator>Zhang, Xiangzhao</creator><creator>Liu, Guiwu</creator><creator>Qiao, Guanjun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9834-3789</orcidid><orcidid>https://orcid.org/0000-0002-6143-182X</orcidid></search><sort><creationdate>20201125</creationdate><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><author>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Gold</topic><topic>Iron</topic><topic>Nanomaterials</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Ruthenium</topic><topic>Silver</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ziwei</creatorcontrib><creatorcontrib>Song, Ruofei</creatorcontrib><creatorcontrib>Wang, Mingyuan</creatorcontrib><creatorcontrib>Zhang, Xiangzhao</creatorcontrib><creatorcontrib>Liu, Guiwu</creatorcontrib><creatorcontrib>Qiao, Guanjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ziwei</au><au>Song, Ruofei</au><au>Wang, Mingyuan</au><au>Zhang, Xiangzhao</au><au>Liu, Guiwu</au><au>Qiao, Guanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>22</volume><issue>45</issue><spage>26223</spage><epage>2623</epage><pages>26223-2623</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom ( i.e. , V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N 2 molecule. Particularly, the V-doped system exhibits two feasible configurations for N 2 adsorption and an ultralow overpotential (0.10 V) via the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts. A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N 2 to ammonia (NH 3 ) under ambient conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp04315j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9834-3789</orcidid><orcidid>https://orcid.org/0000-0002-6143-182X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-11, Vol.22 (45), p.26223-2623
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2459628968
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Ammonia
Catalysts
Chemical industry
Chemical reduction
Chromium
Cobalt
Copper
Density functional theory
Electrocatalysts
Gold
Iron
Nanomaterials
Nitrogen
Nitrogenation
Palladium
Platinum
Ruthenium
Silver
Transition metals
title Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20atom-doped%20arsenene%20as%20electrocatalyst%20for%20reducing%20nitrogen%20to%20ammonia:%20a%20DFT%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Xu,%20Ziwei&rft.date=2020-11-25&rft.volume=22&rft.issue=45&rft.spage=26223&rft.epage=2623&rft.pages=26223-2623&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp04315j&rft_dat=%3Cproquest_cross%3E2464423786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464423786&rft_id=info:pmid/&rfr_iscdi=true