Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study
Due to the wide application of NH 3 in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Here...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-11, Vol.22 (45), p.26223-2623 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2623 |
---|---|
container_issue | 45 |
container_start_page | 26223 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Xu, Ziwei Song, Ruofei Wang, Mingyuan Zhang, Xiangzhao Liu, Guiwu Qiao, Guanjun |
description | Due to the wide application of NH
3
in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (
i.e.
, V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N
2
molecule. Particularly, the V-doped system exhibits two feasible configurations for N
2
adsorption and an ultralow overpotential (0.10 V)
via
the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N
2
to ammonia (NH
3
) under ambient conditions. |
doi_str_mv | 10.1039/d0cp04315j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2459628968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464423786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJE9yubxJu01g8KCtaThzDZ3ZSUJFt3N4f-926tVJA5zMD7zfB4g9A5JTeU8OJWE7UmgtN0dYBGVEieFCQXh_s5k8foxPsVIYSmlI_Q53vTL1uDIdgu0XZtNAbnTR8Lg8emNSo4qyBAu_EB19ZhZ_Sg4hbumygtTY-DxdB1tm_gDgOezhbYh0FvTtFRDa03Z799jD5mD4vJUzJ_fXye3M8TxVMaEq2gpoIAZ2mWgonGSK4lM0pmVS0rYUSuNdM8E5pCxVhV5FIBE6So0jqKfIyudnfXzn4Nxoeya7wybQu9sYMvmUgLyfJCbtHLf-jKDq6P7iIlhWA8y2WkrneUctZ7Z-py7ZoO3KakpNzmXE7J5O0n55cIX-xg59We-_sD_wbLqHmq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464423786</pqid></control><display><type>article</type><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</creator><creatorcontrib>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</creatorcontrib><description>Due to the wide application of NH
3
in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (
i.e.
, V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N
2
molecule. Particularly, the V-doped system exhibits two feasible configurations for N
2
adsorption and an ultralow overpotential (0.10 V)
via
the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N
2
to ammonia (NH
3
) under ambient conditions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp04315j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Catalysts ; Chemical industry ; Chemical reduction ; Chromium ; Cobalt ; Copper ; Density functional theory ; Electrocatalysts ; Gold ; Iron ; Nanomaterials ; Nitrogen ; Nitrogenation ; Palladium ; Platinum ; Ruthenium ; Silver ; Transition metals</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-11, Vol.22 (45), p.26223-2623</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</citedby><cites>FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</cites><orcidid>0000-0001-9834-3789 ; 0000-0002-6143-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Xu, Ziwei</creatorcontrib><creatorcontrib>Song, Ruofei</creatorcontrib><creatorcontrib>Wang, Mingyuan</creatorcontrib><creatorcontrib>Zhang, Xiangzhao</creatorcontrib><creatorcontrib>Liu, Guiwu</creatorcontrib><creatorcontrib>Qiao, Guanjun</creatorcontrib><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><title>Physical chemistry chemical physics : PCCP</title><description>Due to the wide application of NH
3
in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (
i.e.
, V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N
2
molecule. Particularly, the V-doped system exhibits two feasible configurations for N
2
adsorption and an ultralow overpotential (0.10 V)
via
the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N
2
to ammonia (NH
3
) under ambient conditions.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Gold</subject><subject>Iron</subject><subject>Nanomaterials</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Ruthenium</subject><subject>Silver</subject><subject>Transition metals</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1Lw0AQxRdRsFYv3oUFLyJE9yubxJu01g8KCtaThzDZ3ZSUJFt3N4f-926tVJA5zMD7zfB4g9A5JTeU8OJWE7UmgtN0dYBGVEieFCQXh_s5k8foxPsVIYSmlI_Q53vTL1uDIdgu0XZtNAbnTR8Lg8emNSo4qyBAu_EB19ZhZ_Sg4hbumygtTY-DxdB1tm_gDgOezhbYh0FvTtFRDa03Z799jD5mD4vJUzJ_fXye3M8TxVMaEq2gpoIAZ2mWgonGSK4lM0pmVS0rYUSuNdM8E5pCxVhV5FIBE6So0jqKfIyudnfXzn4Nxoeya7wybQu9sYMvmUgLyfJCbtHLf-jKDq6P7iIlhWA8y2WkrneUctZ7Z-py7ZoO3KakpNzmXE7J5O0n55cIX-xg59We-_sD_wbLqHmq</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Xu, Ziwei</creator><creator>Song, Ruofei</creator><creator>Wang, Mingyuan</creator><creator>Zhang, Xiangzhao</creator><creator>Liu, Guiwu</creator><creator>Qiao, Guanjun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9834-3789</orcidid><orcidid>https://orcid.org/0000-0002-6143-182X</orcidid></search><sort><creationdate>20201125</creationdate><title>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</title><author>Xu, Ziwei ; Song, Ruofei ; Wang, Mingyuan ; Zhang, Xiangzhao ; Liu, Guiwu ; Qiao, Guanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-dcaf140a32575ae01508d62ec67bf6b4e48dd2d374d1ab22b986ca2409b5fe483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Gold</topic><topic>Iron</topic><topic>Nanomaterials</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Ruthenium</topic><topic>Silver</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ziwei</creatorcontrib><creatorcontrib>Song, Ruofei</creatorcontrib><creatorcontrib>Wang, Mingyuan</creatorcontrib><creatorcontrib>Zhang, Xiangzhao</creatorcontrib><creatorcontrib>Liu, Guiwu</creatorcontrib><creatorcontrib>Qiao, Guanjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ziwei</au><au>Song, Ruofei</au><au>Wang, Mingyuan</au><au>Zhang, Xiangzhao</au><au>Liu, Guiwu</au><au>Qiao, Guanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>22</volume><issue>45</issue><spage>26223</spage><epage>2623</epage><pages>26223-2623</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Due to the wide application of NH
3
in the energy and chemical industry, the rational design of a highly efficient and low-cost electrocatalyst for nitrogen fixation at moderate conditions is highly desirable to meet the increasing demand for sustainable energy production in the modern society. Herein, we have systematically studied the catalytic performance of transition metal (TM) atom (
i.e.
, V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt, Au)-doped arsenene nanosheet, a new two-dimensional (2D) nanomaterial in VA group, as a heterogeneous catalyst for nitrogen reduction reaction (NRR). By density functional theory (DFT) calculation and systematic theoretical screening, our study predicts that the systems of V-, Fe-, Co- and Ru-doped arsenene have promising potentials as NRR electrocatalysts with high-loading TM and highly stable adsorption of N
2
molecule. Particularly, the V-doped system exhibits two feasible configurations for N
2
adsorption and an ultralow overpotential (0.10 V)
via
the enzymatic pathway, which is very competitive among similar reported electrocatalysts. This theoretical study not only extends the electrocatalyst family for nitrogen fixation, but also further deepens our physical insights into catalytic improvement, which can be expected to guide the rational design of novel NRR catalysts.
A single metal atom-doped 2D material, arsenene, presents potential properties of catalyzing gaseous N
2
to ammonia (NH
3
) under ambient conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp04315j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9834-3789</orcidid><orcidid>https://orcid.org/0000-0002-6143-182X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-11, Vol.22 (45), p.26223-2623 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2459628968 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorption Ammonia Catalysts Chemical industry Chemical reduction Chromium Cobalt Copper Density functional theory Electrocatalysts Gold Iron Nanomaterials Nitrogen Nitrogenation Palladium Platinum Ruthenium Silver Transition metals |
title | Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: a DFT study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20atom-doped%20arsenene%20as%20electrocatalyst%20for%20reducing%20nitrogen%20to%20ammonia:%20a%20DFT%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Xu,%20Ziwei&rft.date=2020-11-25&rft.volume=22&rft.issue=45&rft.spage=26223&rft.epage=2623&rft.pages=26223-2623&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp04315j&rft_dat=%3Cproquest_cross%3E2464423786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464423786&rft_id=info:pmid/&rfr_iscdi=true |